Abstract:
A high speed voltage mode sensing is provided for a digital multibit non-volatile memory integrated system. An embodiment has a local source follower stage followed by a high speed common source stage. Another embodiment has a local source follower stage followed by a high speed source follower stage. Another embodiment has a common source stage followed by a source follower. An auto zeroing scheme is used. A capacitor sensing scheme is used. Multilevel parallel operation is described.
Abstract:
A method of forming an array of floating gate memory cells, and an array formed thereby, wherein a trench is formed into a surface of a semiconductor substrate. The source region is formed underneath the trench, the drain region is formed along the substrate surface, and the channel region therebetween includes a first portion extending vertically along the trench sidewall and a second portion extending horizontally along the substrate surface. The floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. The control gate is disposed over and insulated from the channel region second portion. The trench sidewall meets the substrate surface at an acute angle to form a sharp edge. The channel region second portion extends from the second region in a direction toward the sharp edge and the floating gate to define a path for programming the floating gate with electrons via hot electron injection.
Abstract:
Numerous examples are disclosed of an improved grouping and error correction system for non-volatile memory cells. In one example, a system comprises a memory array comprising non-volatile memory cells arranged into rows and columns, wherein the array stores a plurality of words, wherein respective words are divided into multiple sub-words and respective non-volatile memory cells in the memory array store digital bits belonging to different sub-words of the plurality of sub-words.
Abstract:
In one example, a system comprises a plurality of charge pump units connected in parallel to receive an input voltage and to generate an output voltage greater than the input voltage; and a pumping controller to provide a pumping signal to a first charge pump unit of the plurality of charge pump units and to provide sequentially delayed versions of the pumping signal to the other charge pump units of the plurality of charge pump units, the pumping controller comprising a plurality of circuit blocks, each of the plurality of circuit blocks comprising a delay circuit and a latch.
Abstract:
Numerous embodiments of analog neural memory systems that enable concurrent write and verify operations are disclosed. In some embodiments, concurrent operations occur among different banks of memory. In other embodiments, concurrent operations occur among different blocks of memory, where each block comprises two or more banks of memory. The embodiments substantially reduce the timing overhead for weight writing and verifying operations in analog neural memory systems.
Abstract:
In one example, a method of testing a plurality of non-volatile memory cells in an array of non-volatile memory cells, wherein the array is arranged in rows and columns, wherein each row is coupled to a word line and each column is coupled to a bit line, and wherein each word line is selectively coupled to a row decoder and each bit line is selectively coupled to a column decoder, comprises asserting, by the row decoder, all word lines in the array; asserting, by the column decoder, all bit lines in the array; performing a deep programming operation on the array of non-volatile memory cells; and measuring a total current received from the bit lines.
Abstract:
A method of forming a device on a semiconductor substrate having first, second, third and dummy areas, includes recessing the substrate upper surface in the first, second and dummy areas, forming a first conductive layer over the substrate, removing the first conductive layer from the third area and a second portion of the dummy area, forming a first insulation layer over the substrate, forming first trenches through the first insulation layer and into the substrate in the third area and the second portion of the dummy area, forming second trenches through the first insulation layer, the first conductive layer and into the substrate in the first and second areas and a first portion of the dummy area, and filling the first and second trenches with insulation material. Then, memory cells are formed in the first area, HV devices in the second area and logic devices in the third area.
Abstract:
Numerous embodiments of a precision programming algorithm and apparatus are disclosed for precisely and quickly depositing the correct amount of charge on the floating gate of a non-volatile memory cell within a vector-by-matrix multiplication (VMM) array in an artificial neural network. Selected cells thereby can be programmed with extreme precision to hold one of N different values.
Abstract:
Numerous embodiments of decoders for use with a vector-by-matrix multiplication (VMM) array in an artificial neural network are disclosed. The decoders include bit line decoders, word line decoders, control gate decoders, source line decoders, and erase gate decoders. In certain embodiments, a high voltage version and a low voltage version of a decoder is used.
Abstract:
Numerous embodiments for reading or verifying a value stored in a selected memory cell in a vector-by-matrix multiplication (VMM) array in an artificial neural network are disclosed. In one embodiment, an input comprises a set of input bits that result in a series of input signals applied to a terminal of the selected memory cell, further resulting in a series of output signals that are digitized, shifted based on the bit location of the corresponding input bit in the set of input bits, and added to yield an output indicating a value stored in the selected memory cell.