Method for signal detection in a gas analysis system

    公开(公告)号:US09863874B2

    公开(公告)日:2018-01-09

    申请号:US15274305

    申请日:2016-09-23

    Abstract: A method for signal detection with a gas analysis system (1, 1′) includes a radiation source (3); a gas measuring section (9) containing gas to be measured; a Fabry-Perot interferometer (13); a thermal sensor (17) configured to cause a change in voltage between electrodes with electromagnetic radiation falling thereon and arranged such that radiation released by a second interferometer mirror falls on the thermal sensor. The method includes irradiating the gas measuring section with radiation source radiation, continuously increasing or decreasing a distance of interferometer mirrors during a generating of time signal pulses at a constant period of time from one another. After a predefined number of time signal pulses, the voltage generated between the electrodes is detected and stored as a measured signal value. After a further predefined number of time signal pulses, the voltage generated between the electrodes is detected again and stored as a measured signal value.

    Photothermal spectroscopy with hollow-core optical fiber

    公开(公告)号:US09846118B2

    公开(公告)日:2017-12-19

    申请号:US15097732

    申请日:2016-04-13

    Abstract: The present invention provides a gas measuring method based on photothermal effect in hollow-core optical fiber comprising: filling a target gas into the core of a hollow-core optical fiber; coupling a probe light and a periodically modulated pump light into the hollow-core optical fiber; absorbing the pump light by the target gas resulting in the periodic modulation of the phase of the probe light; demodulating the phase modulation information of the probe light to obtain the concentration of the target gas, wherein the pump laser is wavelength and/or amplitude modulated. In the present invention, two lasers including a pump laser and a probe laser are used for the measurement, this approach is simple and practical. Also, the use of the hollow-core optical fiber with extremely-small core area greatly increases the optical power density, thus enhances the strength of the detected photothermal signal; this method allows ppb level gas measurement with high selectivity, and is universally suitable for the detection of gases with absorption in near-infrared.

    Apparatus for measuring optical signals from multiple optical fiber sensors

    公开(公告)号:US09810556B2

    公开(公告)日:2017-11-07

    申请号:US14677470

    申请日:2015-04-02

    Abstract: There is described a sensor apparatus. It comprises an interrogator comprising a light source emitting pulses having a wavelength about an average wavelength; and a fiber Bragg grating (FBG) arrangement. The arrangement comprises a FBG sensor array comprising a plurality of FBG sensors on an optical fiber and being for reflecting the pulses, thereby producing reflected pulses at each one of the FBG sensors. FBG sensors of a given FBG sensor array have a spatial separation therebetween which is sufficient to allow, at a receiver, a temporal discrimination between the reflected pulses produced by each one of the FBG sensors. The FBG sensor array has a spectral reflection window which comprises the average wavelength.

    PHOTOTHERMAL SPECTROSCOPY WITH HOLLOW-CORE OPTICAL FIBER

    公开(公告)号:US20170299508A1

    公开(公告)日:2017-10-19

    申请号:US15097732

    申请日:2016-04-13

    Abstract: The present invention provides a gas measuring method based on photothermal effect in hollow-core optical fiber comprising: filling a target gas into the core of a hollow-core optical fiber; coupling a probe light and a periodically modulated pump light into the hollow-core optical fiber; absorbing the pump light by the target gas resulting in the periodic modulation of the phase of the probe light; demodulating the phase modulation information of the probe light to obtain the concentration of the target gas, wherein the pump laser is wavelength and/or amplitude modulated. In the present invention, two lasers including a pump laser and a probe laser are used for the measurement, this approach is simple and practical. Also, the use of the hollow-core optical fiber with extremely-small core area greatly increases the optical power density, thus enhances the strength of the detected photothermal signal; this method allows ppb level gas measurement with high selectivity, and is universally suitable for the detection of gases with absorption in near-infrared.

Patent Agency Ranking