Abstract:
A read only memory (ROM) and an operating method thereof are provided. The read only memory includes: a control circuit, powered by a first power source for outputting a control signal within a first voltage range; a voltage shifter, for expanding the amplitude of the control signal to a second voltage range; a word line driver, powered by a second power source with a voltage which is higher than that of the first power source, for driving one of a plurality of word lines of a read only memory cell array according to the control signal which is expanded to be within the second voltage range; and an input/output circuit, for connecting the plurality of bit lines to read out messages.
Abstract:
A device includes a die including a main circuit and a first pad coupled to the main circuit. A work piece including a second pad is bonded to the die. A first plurality of micro-bumps is electrically coupled in series between the first and the second pads. Each of the plurality of micro-bumps includes a first end joining the die and a second end joining the work piece. A micro-bump is bonded to the die and the work piece. The second pad is electrically coupled to the micro-bump.
Abstract:
An integrated circuit includes a positive power supply node, a current tracking circuit, and a current mirroring circuit including a plurality of current paths coupled in parallel. The currents of the plurality of current paths mirror a current of the current tracking circuit. The current mirroring circuit is configured to turn off the plurality of current paths one-by-one in response to a reduction in a positive power supply voltage on the positive power supply node. The integrated circuit further includes a charging node receiving a summation current of the plurality of current paths, wherein a voltage on the charging node is configured to increase through a charging of the summation current.
Abstract:
A memory circuit includes a plurality of bit lines. A first memory cell and a second memory cell are coupled in series. Each of the first memory cell and the second memory cell is capable of storing a first type datum. The first memory cell and the second memory cell share a first common source/drain (S/D) region. The first common S/D region is electrically isolated from all of the bit lines.
Abstract:
A static random access memory (SRAM) cell includes a pair of cross-coupled inverters having a first node and a second node. A first transistor is coupled between the first node and a first bit line. A second transistor is coupled between the second node and a second bit line. A third transistor is coupled with the first node. The third transistor has a threshold voltage that is higher than that of a fourth transistor of the pair of cross-coupled inverters by about 10% or more. A fifth transistor is coupled between the third transistor and a third bit line.
Abstract:
An integrated circuit (IC) chip includes a first memory cell array block having a first metal layer containing at least two power lines, and a second memory cell array block containing at least two power lines independent of each other, wherein all the power lines on the first metal layer serving the first memory cell array block do not extend into the second memory cell array block, and all the power lines on the first metal layer serving the second memory cell array block do not extend into the first memory cell array block.
Abstract:
An integrated circuit includes at least one memory array for storing data. A first switch is coupled with the memory array. A first power line is coupled with the first switch. The first power line is operable to supply a first power voltage. A second switch is coupled with the memory array. A second power line is coupled with the second switch. The second power line is operable to supply a second power voltage for retaining the data during a retention mode. A third power line is coupled with the memory array. The third power line is capable of providing a third power voltage.
Abstract:
A memory device includes an array of transistors, a plurality of bit lines, and a plurality of source lines. The transistors include gate, drain and source terminals. The gate terminals are electrically coupled to word lines. The plurality of bit lines connect a power source to the drain terminals of the array of transistors and the plurality of source lines connect the power source to the source terminals of the array of transistors. The connections are made active during a standby mode, thereby limiting leakage current without entailing drawbacks associated with degraded memory access/cycle time.
Abstract:
An integrated circuit device includes a first word-line; a second word-line; a first bit-line; and a static random access memory (SRAM) cell. The SRAM cell includes a storage node; a pull-up transistor having a source/drain region coupled to the storage node; a pull-down transistor having a source/drain region coupled to the storage node; a first pass-gate transistor comprising a gate coupled to the first word-line; and a second pass-gate transistor including a gate coupled to the second word-line. Each of the first and the second pass-gate transistors includes a first source/drain region coupled to the first bit-line, and a second source/drain region coupled to the storage node.
Abstract:
In some embodiments related to a memory array, a sense amplifier (SA) uses a first power supply, e.g., voltage VDDA, while other circuitry, e.g., signal output logic, uses a second power supply, e.g., voltage VDDB. Various embodiments place the SA and a pair of transferring devices at a local IO row, and a voltage keeper at the main IO section of the same memory array. The SA, the transferring devices, and the voltage keeper, when appropriate, operate together so that the data logic of the circuitry provided by voltage VDDB is the same as the data logic of the circuitry provided by voltage VDDA.