Abstract:
An analysis assembly (12) for analyzing one or more physiological parameters of a person (10) comprises a sensor assembly (14) and an analyzer (16). The sensor assembly (14) includes a sampler (218) that collects a sample (220) from the person (10); and a signal generating apparatus (222) that directs a mid-infrared light beam (232) toward the sample (220) and performs spectroscopy on the sample (220) to generate a signal (215) that is based at least in part on the one or more physiological parameters of the person (10). The sampler (218) and the signal generating apparatus (222) can be positioned less than approximately one meter from the person (10) while the sample (220) is being collected and spectroscopically scanned to generate the signal (215). The analyzer (16) receives and analyzes the signal (215) to determine the presence of the one or more physiological parameters in the sample (220).
Abstract:
A laser source (10) for emitting an output beam (12) along an output axis (12A) includes (i) a first laser module (16) that generates a first beam (16A); (ii) a second laser module (18) that generates a second beam (18A); (iii) a beam selector assembly (32); (iv) a first director assembly (24) that directs the first beam (16A) at the beam selector assembly (32); (v) a second director assembly (26) that directs the second beam (18A) at the beam selector assembly (32); and (vii) a control system (34) that directs power to the modules (16), (18). The beam selector assembly (32) moves between a first position in which the first beam (16A) is directed along the output axis (12A), and a second position in which the second beam (18A) is directed along the output axis (12A).
Abstract:
A light source assembly includes a housing assembly, a plurality of disparate light sources that are coupled to the housing assembly, a power source, a control system and a selector assembly. Each of the light sources generates an output beam that is directed away from the housing assembly, wherein each of the output beams has a center wavelength that is in a different wavelength range than each of the other output beams. The power source provides electrical power to each of the light sources. The control system selectively controls the electrical power that is provided by the power source to the light sources. The selector assembly is electrically connected to the control system, and is selectively controllable to selectively direct current to each of the light sources to generate the desired output beams.
Abstract:
A laser assembly (10) that generates a beam (12) includes (i) a gain medium (22) that generates the beam (12) when electrical power is directed to the gain medium (22); (ii) a grating (32) positioned in a path of the beam (12); (iii) a grating arm (34) that retains the grating (32); and (iv) a mover assembly (36) that moves the grating arm (34) about a pivot axis (38). The mover assembly (36) includes a coarse mover (344) that makes large scale movements to the grating arm (34), and a fine mover (352) that makes fine movements to the grating arm (34). With this design, the mover assembly (36) can quickly and accurately move the grating (32) over a relatively large range.
Abstract:
An imaging microscope (12) for generating an image of a sample (10) comprises a beam source (14) that emits a temporally coherent illumination beam (20), the illumination beam (20) including a plurality of rays that are directed at the sample (10); an image sensor (18) that converts an optical image into an array of electronic signals; and an imaging lens assembly (16) that receives rays from the beam source (14) that are transmitted through the sample (10) and forms an image on the image sensor (18). The imaging lens assembly (16) can further receive rays from the beam source (14) that are reflected off of the sample (10) and form a second image on the image sensor (18). The imaging lens assembly (16) receives the rays from the sample (10) and forms the image on the image sensor (18) without splitting and recombining the rays.
Abstract:
A tunable light source (10) that generates a source beam (12) having a tunable source frequency (12a) includes an emitter assembly (14), a first frequency generator (16), and a first filter (18). The emitter assembly (14) emits an emitter beam (14a), and the first frequency generator (16) receives the emitter beam (14a) and generates a plurality of first frequency lines (16b). The first filter (18) filters the first frequency lines (16b) to transmit a first filter beam (18a) that includes only one of the first frequency lines (16b). The light source (10) can include a second frequency generator (20) that converts the first filter beam (18a) into a plurality of second frequency lines (20b), and a second filter (22) that filters the second frequency lines (20b) to provide a second filter beam (22a) having the source frequency (12a).
Abstract:
An imaging microscope (12) for generating an image of a sample (10) comprises a beam source (14) that emits a temporally coherent illumination beam (20), the illumination beam (20) including a plurality of rays that are directed at the sample (10); an image sensor (18) that converts an optical image into an array of electronic signals; and an imaging lens assembly (16) that receives rays from the beam source (14) that are transmitted through the sample (10) and forms an image on the image sensor (18). The imaging lens assembly (16) can further receive rays from the beam source (14) that are reflected off of the sample (10) and form a second image on the image sensor (18). The imaging lens assembly (16) receives the rays from the sample (10) and forms the image on the image sensor (18) without splitting and recombining the rays.
Abstract:
A spectral imaging device (1312) for capturing one or more, two-dimensional, spectral images (1313A) of a sample (1310) including (i) an image sensor (1328), (ii) an illumination source (1314), (iii) a beam path adjuster (1362), and (iv) a control system (1330). The illumination source (1314) that generates an illumination beam (1316) that is directed along an incident sample beam path (1360) at the sample (1310). The beam path adjuster (1362) selectively adjusts the incident sample beam path (1360). The control system (1330) controls (i) the illumination source (1314) to generate the illumination beam during the first capture time, (ii) the image sensor (1328) during the first capture time to capture first information for the first spectral image (1313A), and (iii) the beam path adjuster (1362) to selectively adjust the incident sample beam path (1360) relative to the sample (1310) during the first capture time while the image sensor (1328) is accumulating the information for the first spectral image (1313A).
Abstract:
An imaging microscope (12) for generating an image of a sample (10) comprises a beam source (14) that emits a temporally coherent illumination beam (20), the illumination beam (20) including a plurality of rays that are directed at the sample (10); an image sensor (18) that converts an optical image into an array of electronic signals; and an imaging lens assembly (16) that receives rays from the beam source (14) that are transmitted through the sample (10) and forms an image on the image sensor (18). The imaging lens assembly (16) can further receive rays from the beam source (14) that are reflected off of the sample (10) and form a second image on the image sensor (18). The imaging lens assembly (16) receives the rays from the sample (10) and forms the image on the image sensor (18) without splitting and recombining the rays.
Abstract:
A chromatography analyzer system (10) for analyzing a sample (12) includes a MIR analyzer (34) for spectrally analyzing a sample fraction (12A) while the sample fraction (12A) is flowing in the MIR analyzer (34). The MIR analyzer (34) includes (i) a MIR flow cell (35C) that receives the flowing sample fraction (12A), (ii) a MIR laser source (35A) that directs a MIR beam (35B) in a MIR wavelength range at the sample fraction (12A) in the MIR flow cell (35C), and (iii) a MIR detector (35D) that receives light from the sample fraction (12A) in the MIR flow cell (35C) and generates MIR data of the sample fraction (12A) for a portion of the MIR wavelength range.