Abstract:
A semiconductor integrated circuit includes a multi-chip package having a plurality of semiconductor chips. The semiconductor integrated circuit includes a signal line; and a signal loading compensation section in a semiconductor chip among the plurality of semiconductor chips, configured to apply a designed signal loading to the signal line in response to activation of a test signal. Here, the designed signal loading has a value corresponding to a signal loading component of another semiconductor chip among the plurality of semiconductor chips to the signal line.
Abstract:
A semiconductor system includes a controller; a semiconductor device comprising a plurality of stacked semiconductor chips stacked over the controller, and a plurality of through-silicon vias (TSVs) configured to commonly transfer a signal to the plurality of stacked semiconductor chips; and a defect information transfer TSV configured to transfer TSV defect information sequentially outputted from at least one of the semiconductor chips to the controller, wherein the controller comprises: a plurality of first repair fuse units configured to set first fuse information based on the TSV defect information; and a plurality of first TSV selection units configured to selectively drive the TSVs in response to the first fuse information.
Abstract:
A semiconductor package includes a wire board, a plurality of semiconductor chips configured to be stacked over the wire board and to be electrically coupled with the wire board, and at least one shielding unit configured to be formed between the plurality of semiconductor chips and to be maintained at a predetermined voltage.
Abstract:
A system in package (SIP) semiconductor system includes a memory device, a controller, a first input/output terminal, a test control unit, and a second input/output terminal. The controller communicates with the memory device. The first input/output terminal performs communication between the controller and a device external to the SIP semiconductor system. The test control unit controls a predetermined test mode of the memory device. The second input/output terminal performs communication between the test control unit and at least the device external to the SIP semiconductor system.
Abstract:
A semiconductor system, a semiconductor memory apparatus, and a method for input/output of data using the same are disclosed. The semiconductor system includes a controller and a memory apparatus where the controller is configured to transmit a clock signal, a data output command, an address signal, and a second strobe signal to a memory apparatus. The memory apparatus is configured to provide data to the controller in synchronization with the second strobe signal, and in response to the clock signal, the data output command, the address signal, and the second strobe signal received from the controller.
Abstract:
A semiconductor device and a method for driving the same rapidly detect failure of a through-semiconductor-chip via and effectively repairing the failure using a latching unit assigned to each through-semiconductor-chip via. The semiconductor device includes a plurality of semiconductor chips that are stacked, and a plurality of through-semiconductor-chip vias to commonly transfer a signal to the plurality of semiconductor chips, wherein each of the semiconductor chips includes a multiplicity of latching units assigned to the through-semiconductor-chip vias and the multiplicity of latching units of each of the semiconductor chips constructs a boundary scan path including the plurality of through-semiconductor-chip vias to sequentially transfer test data.
Abstract:
A semiconductor apparatus includes a reference voltage generation unit, a comparison voltage generation unit, and a calibration unit. The reference voltage generation unit is disposed in a reference die and configured to generate a reference voltage. The comparison voltage generation unit is disposed in a die stacked on the reference die and configured to generate a comparison voltage in response to a calibration control signal. The calibration unit is configured to compare a level of the reference voltage with a level of the comparison voltage and generate the calibration control signal.
Abstract:
A size variable semiconductor chip includes a semiconductor chip area formed with a circuit layer and at least one cutting area extending parallel to at least one side of the semiconductor chip area. A plurality of scribe line parts and a plurality of active parts alternately formed with each other in the cutting area.
Abstract:
An output driver is applicable to two or more interface standards. The output driver includes a pre-driver configured to generate pull-up control signals and pull-down control signals according to a logic value of data to be output and a target resistance, and adjust slew rates of the pull-up control signals and the pull-down control signals according to operation modes, and a driver configured to output the data in response to the pull-up and pull-down control signals.
Abstract:
A data output circuit of a semiconductor memory apparatus includes a pre-driver generating pull-up and down signals from driving rising and falling data in active periods of rising and falling clocks, respectively, in accordance with a state of an output enable signal. A main driver generates last output data to a common node from the pull-up and down signals. An assistant pre-driver generates an assistant drive signal, which is activated when the rising data disagrees with the falling data, in correspondence with inputs of the rising data, the falling data, the rising clock, the falling clock, and a pipe output control signal. An assistant main driver generates assistant last output data to the common node from the pull-up and down signals in accordance with a state of the assistant drive signal.