Abstract:
Exemplary embodiments of the present invention disclose a light emitting diode chip including a substrate having a first surface and a second surface, a light emitting structure arranged on the first surface of the substrate and including an active layer arranged between a first conductive-type semiconductor layer and a second conductive-type semiconductor layer, a distributed Bragg reflector arranged on the second surface of the substrate, the distributed Bragg reflector to reflect light emitted from the light emitting structure, and a metal layer arranged on the distributed Bragg reflector, wherein the distributed Bragg reflector has a reflectivity of at least 90% for light of a first wavelength in a blue wavelength range, light of a second wavelength in a green wavelength range, and light of a third wavelength in a red wavelength range.
Abstract:
An anti-reflection coating has an average total reflectance of less than 10%, for example less than 5.9% such as from 4.9% to 5.9%, over a spectrum of wavelengths of 400-1100 nm and a range of angles of incidence of 0-90 degrees with respect to a surface normal of the anti-reflection coating. An anti-reflection coating has a total reflectance of less than 10%, for example less than 6% such as less than 4%, over an entire spectrum of wavelengths of 400-1600 nm and an entire range of angles of incidence of 0-70 degrees with respect to a surface normal of the anti-reflection coating.
Abstract:
A printing medium detecting device capable of accurately detecting an amount of printing media in a paper cassette, an image forming apparatus including the printing medium detecting device, and a method to detect a printing medium. The printing medium detecting device of the image forming apparatus includes a light source to emit a light beam to one side of a stack of printing media housed in a paper cassette, a scanning unit to scan the light beam reflected from the stack and generate a signal based on the light beam, and a computing unit to compute information related to the stack based on the signal, wherein the information includes a number of printing media sheets in the stack.
Abstract:
An optical recording/reproducing apparatus includes an optical pickup unit configured to scan an optical disk with an optical signal to record and reproduce data. A power tuning unit is configured to scan a first track with the optical signal to record a first test data to the first track, while changing a power level of the optical signal within a predetermined range in sequence. A scanning time tuning unit is configured to scan a second track with an optical signal to record a second test data to the second track, while changing a scanning time within a predetermined range in sequence. A state detection unit is configured to detect a reproduction state of the first test data and second test data. A controller is configured to check the reproductions state of the first test data and second test data and determine an optimal power level and optimal scanning time. Accordingly, a write strategy is rapidly and optically tuned.
Abstract:
The present invention provides a method of fabricating a light emitting diode chip having an active layer between an N type semiconductor layer and a P type semiconductor layer. The method comprises the steps of preparing a substrate; laminating the semiconductor layers on the substrate, the semiconductor layers having the active layer between the N type semiconductor layer and the P type semiconductor layer; and forming grooves on the semiconductor layers laminated on the substrate until the substrate is exposed, whereby inclined sidewalls are formed by the grooves in the semiconductor layers divided into a plurality of chips. According to embodiments of the present invention, a sidewall of a semiconductor layer formed on a substrate of a light emitting diode chip is inclined with respect to the substrate, whereby its directional angle is widened as compared with a light emitting diode chip without such inclination. As the directional angle of the light emitting diode chip is wider, when a white light emitting device is fabricated using the light emitting diode chip and a phosphor, light uniformity can be adjusted even though the phosphor is not concentrated at the center of the device. Thus, the overall light emitting efficiency can be enhanced by reducing a light blocking phenomenon caused by the increased amount of the phosphor distributed at the center portion.
Abstract:
An adaptive writing method of a high-density optical recording apparatus and a circuit thereof. The circuit includes a discriminator for discriminating a magnitude of a present mark of input NRZI data and magnitudes of leading and/or trailing spaces of the input NRZI data, a generator for controlling the waveform of a write pulse in accordance with the magnitude of the present mark of the input NRZI data and the magnitudes of the leading and/or trailing spaces of the input NRZI data to generate an adaptive write pulse, and a driver for driving a light source by converting the adaptive write pulse into a current signal in accordance with driving power levels for respective channels of the adaptive write pulse. The widths of the first and/or last pulses of the write pulse waveform are varied in accordance with the magnitude of the present mark of input NRZI data and the magnitude of the leading and/or trailing spaces, thereby minimizing jitter to enhance system reliability and performance.
Abstract:
Semiconductor devices having a plurality of fuses and methods of forming the same are provided. The semiconductor device having a fuse including a substrate having a cell region and/or a fuse box region. A first insulation interlayer may be formed on the substrate. A first etch stop layer may be formed on the first insulation interlayer. A metal wiring including a barrier layer, a metal layer and/or a capping layer may be formed on the first etch stop layer of the cell region. Fuses, spaced apart from each other, may be formed on the first etch stop layer of the fuse box region. Each fuse may include the barrier layer and/or the metal layer. A second insulation interlayer having an opening exposing the fuse box region may be formed on the metal wiring and/or the first etch stop layer. The etch stop layer may allow the fuses to be formed more uniformly and decrease the probability of breaking the fuses.
Abstract:
Security fibers having enhanced antifalsification features are prepared by a process which comprises the steps of: i) braiding 5 to 30 denier fibers to form a twine; ii) dyeing the twine with a dye or pigment; iii) drying the dyed twine; and then iv) cutting the dried twine to give the security fibers in the form of cut fibers.
Abstract:
A dual-band antenna for mobile communication unit is provided with a support made of an insulating material, double stranded helical conductors, and a coaxial feeder connected to an end of each of the helical conductors. The double stranded helical conductors are wound in an identical direction on the support without intersecting each other to have different resonance frequencies, respectively, a winding region of the second helical conductor being a part of that of the first helical conductor. When a voltage is applied to the first and the second helical conductors through the coaxial feeder, the antenna operates in the optimum performance at two frequency bands. As a result, the unit can use a desired different mobile telecommunication service without changing it. Further, the inventive antenna is designed to be small in size to thereby allow it to be adapted on the mobile telecommunication unit.