Abstract:
The invention provides an organic thin film transistor array substrate, comprising: a substrate, having a liquid crystal display area and an organic thin film transistor area; a pixel electrode, formed on the substrate in the LCD area; a first alignment film, formed on the pixel electrode; a second alignment film, formed on the substrate in the OTFT area; an organic semiconductor layer, formed on the second alignment film, wherein the organic semiconductor layer is aligned along the direction of the second alignment film; and a gate, a source and a drain, formed in the OTFT area, wherein the source and the drain are in contact with the organic semiconductor layer and a channel is formed between the source and the drain.
Abstract:
An organic thin film transistor array substrate including a substrate divided into an LCD region and an OTFT region; a first dielectric layer formed on the substrate in the LCD region and having a first uneven portion; an organic semiconducting layer formed on the substrate in the OTFT region; a gate, source, and drain formed in the OTFT region, wherein the source and drain are in contact with the organic semiconducting layer to form a channel between the source and drain; and a pixel electrode formed on the first uneven portion of the first dielectric layer in the LCD region.
Abstract:
An improved gas injection nozzle for use in gas-assisted injection molding process is disclosed. The improved gas injection nozzle comprises: (a) a nozzle body, and a nozzle cap fixedly connected to the nozzle body; (b) a gas inlet provided in the nozzle body so as to allow gas to be injected into a mold cavity via a gas channel formed inside both the nozzle body and the nozzle cap; (c) a heating coil provided on the gas injection nozzle; and (d) at least one circumferential groove formed on the outer surface of the nozzle cap. The circumferential groove formed on the outer surface of the nozzle cap preferably has the shape of a spiral groove, with a depth between about 0.2 mm and about 0.5 mm and a length between about 50 mm and about 150 mm. The combination of the heating coil and the circumferential groove prevents the formation of micro cracks that are often formed in the interstices between the nozzle cap and the sprue bushing during the cooling stage of injection molding process. These micro cracks allow passageways to be developed for the inert gas to be leaked out and a fall-off of the gas pressure inside the mold cavity, resulting in sinks and/or warpages to be formed on the injection molded product. The prevention of gas leakage also eliminates the need for continuous gas and thus reduces the manufacturing cost.
Abstract:
An overcurrent breaker switch includes an upper housing including a lever block with a push rod and a lower housing engaged with the upper housing. First and second blades are mounted to the lower housing, the second blade having a dual metal plate mounted thereon. A lever plate base is mounted in the lower housing and has a first end for releasable electrical connection with the dual metal plate and a second end. A conductive lever plate is pivotally mounted to the second end of the lever plate base and actuatable by the push rod under operation of the lever block. The conductive lever plate has a first end for releasable electrical connection with the first blade and a second end on which a pressing piece is formed. An insulating plate is mounted between the lever plate base and the dual metal plate and has an insulating piece below the pressing piece of the conductive lever plate. A spring is mounted under the insulating piece to provide an upward force. When switch is under an overload condition, the dual metal plate disengages with the lever plate base and the insulating plate is moved upwardly under action of the spring thereby breaking the circuit.
Abstract:
A foldable electronic device includes a first body, a second body and a hinge body. The hinge body is pivoted to the first body around a first pivoting axis and pivoted to the second body around a second pivoting axis so that the first body is able to rotate relatively to the second body. When the first body rotates to a first position relatively to the second body, a first front surface of the first body is closed to a second front surface of the second body on a closing plane, and a pivoting plane where the first pivoting axis and the second pivoting axis are located on and the closing plane are oblique to each other.
Abstract:
The invention provides a docking station, which includes a base, a tray and an electrical connector. The base has a chamber. The tray is slidingly disposed at the chamber. The electrical connector is slidingly disposed at the base and disposed at a side of the tray, in which the tray moves under a pressing force to drive the electrical connector for moving. The invention also provides a display system, which includes an electronic device and a docking station, so that the electronic device is detachably disposed at the docking station to expand the applications thereof.
Abstract:
Methods, compositions and kits are provided for increasing the expression of a gene product in a cell by contacting the cell with a modified small activating RNA (saRNA) molecule, which provides for an increase in gene expression that is improved over the increase in expression provided by traditional saRNAs. These methods and compositions find use in any application in which an increase in gene expression in a cell is desired.
Abstract:
Methods, compositions and kits are provided for increasing the expression of a gene product in a cell by contacting the cell with a modified small activating RNA (saRNA) molecule, which provides for an increase in gene expression that is improved over the increase in expression provided by traditional saRNAs. These methods and compositions find use in any application in which an increase in gene expression in a cell is desired.
Abstract:
The present invention relates to methods for cleaning semiconductors used in photovoltaic cells and modules, and methods for manufacturing p-n junctions for photovoltaic cells and modules. More particularly, the method comprises providing at least one semiconductor layer of a photovoltaic module and scrubbing the surface of the least one semiconductor layer in the presence of a chemical solution.