摘要:
A method for fabricating a magnetoresistive random access memory (MRAM) includes forming a mask over a magnetic layer; forming a template on the mask; applying a diblock copolymer to the template; curing the diblock copolymer to form a first plurality of uniform shapes registered to the template; etching the mask to form a second plurality of uniform shapes; and etching the magnetic layer to form a third plurality of uniform shapes, the third plurality of uniform shapes comprising a plurality of magnetic tunnel junctions (MTJs). A diblock copolymer mask for fabricating a magnetoresistive random access memory (MRAM) includes a magnetic layer; a mask formed on the magnetic layer; a template formed on the mask; and a diblock copolymer mask comprising a plurality of uniform shapes formed on and registered to the template.
摘要:
A method of forming a magnetic domain wall memory apparatus with write/read capability includes forming a plurality of coplanar shift register structures each comprising an elongated track formed from a ferromagnetic material having a plurality of magnetic domains therein, the shift register structures further having a plurality of discontinuities therein to facilitate domain wall location: forming a magnetic read element associated with each of the shift register structures: and forming a magnetic write element associated with each of the shift register structures, the magnetic write element further comprising a write wire having a constriction therein, the constriction located at a point corresponding to the location of one of the plurality of discontinuities in the associated shift register structure.
摘要:
In one embodiment, the invention is a method and apparatus for fabricating sub-lithography data tracks for use in magnetic shift register memory devices. One embodiment of a memory device includes a first stack of dielectric material formed of a first dielectric material, a second stack of dielectric material surrounding the first stack of dielectric material and formed of at least a second dielectric material, and at least one data track for storing information, positioned between the first stack of dielectric material and the second stack of dielectric material, the data track having a high aspect ratio and a substantially rectangular cross section.
摘要:
Techniques for magnetic device fabrication are provided. In one aspect, a method of patterning at least one, e.g., nonvolatile, material comprises the following steps. A hard mask structure is formed on at least one surface of the material to be patterned. The hard mask structure is configured to have a base, proximate to the material, and a top opposite the base. The base has one or more lateral dimensions that are greater than one or more lateral dimensions of the top of the hard mask structure, such that at least one portion of the base extends out laterally a substantial distance beyond the top. The top of the hard mask structure is at a greater vertical distance from the material being etched than the base. The material is etched.
摘要:
A method for forming an alignment mark structure for a semiconductor device includes forming an alignment recess at a selected level of the semiconductor device substrate. A first metal layer is formed over the selected substrate level and within the alignment recess, wherein the alignment recess is formed at a depth such that the first metal layer only partially fills the alignment recess. A second metal layer is formed over the first metal layer such that the alignment recess is completely filled. The second metal layer and the first metal layer are then planarized down to the selected substrate level, thereby creating a sacrificial plug of the second layer material within the alignment recess. The sacrificial plug is removed in a manner so as not to substantially roughen the planarized surface at the selected substrate level.
摘要:
In an MRAM cell, the writing current is encased in a low-reluctance material that is treated in one of several ways to render the material closest to the storage element ineffective to carry magnetic flux, thereby establishing a horseshoe-shaped cross section that focuses the flux toward the storage element.
摘要:
Self-aligning vias and trenches etched between adjacent lines of metallization allows the area of the dielectric substrate allocated to the via or trench to be significantly reduced without increasing the possibility of electrical shorts to the adjacent lines of metallization.
摘要:
A semiconductor device includes a substrate including an M2 patterned area. A VA pillar structure is formed over the M2 patterned area. The VA pillar structure includes a substractively patterned metal layer. The VA pillar structure is a sub-lithographic contact. An MTJ stack is formed over the oxide layer and the metal layer of the VA pillar. A size of the MTJ stack and a shape anisotropy of the MTJ stack are independent of a size and a shape anisotropy of the sub-lithographic contact.
摘要:
A semiconductor device includes a substrate including an M2 patterned area. A VA pillar structure is formed over the M2 patterned area. The VA pillar structure includes a substractively patterned metal layer. The VA pillar structure is a sub-lithographic contact. An MTJ stack is formed over the oxide layer and the metal layer of the VA pillar. A size of the MTJ stack and a shape anisotropy of the MTJ stack are independent of a size and a shape anisotropy of the sub-lithographic contact.
摘要:
A method for fabricating a synthetic antiferromagnetic device, includes depositing a magnesium oxide spacer layer on a reference layer having a first and second ruthenium layer, depositing a cobalt iron boron layer on the magnesium oxide spacer layer; and depositing a third ruthenium layer on the cobalt iron boron layer, the third ruthenium layer having a thickness of approximately 0-18 angstroms.