Abstract:
Techniques relating to arbitration in a memory controller are disclosed. In some embodiments, the memory controller implements a per-bank priority-based arbitration scheme for different types of memory traffic (e.g., with different quality of service parameters). In some embodiments, the memory controller is configured to provide per-bank overrides to the arbitration scheme based on latency tolerance reported by one or more requesters sending a particular type of memory traffic. Various techniques disclosed herein may improve performance, improve fairness among different types of memory traffic, and/or reduce power consumption.
Abstract:
An interface emulator for an IC is disclosed. An interface emulator includes a first first-in, first-out memory (FIFO) and a second FIFO. The first FIFO is coupled to receive data from an access port and a second FIFO coupled to receive data from at least one functional unit in the IC. The access port may be coupled to a device that is external to the IC. The external device may write information into the first FIFO, and this information may subsequently be read by a functional unit in the IC. Similarly, the functional unit may write information into the second FIFO, with the external device subsequently reading the information. Information may be written into the FIFOs in accordance with a predefined protocol. Thus, a particular type of interface may be emulated even though the physical connection and supporting circuitry for that interface is not otherwise implemented in the IC.
Abstract:
A method and apparatus for interfacing dynamic hardware power managed blocks and software power managed blocks is disclosed. In one embodiment, and integrated circuit (IC) may include a number of power manageable functional units. The functional units maybe power managed through hardware, software, or both. Each of the functional units may be coupled to at least one other functional unit through a direct communications link. A link state machine may monitor each of the communications links between functional units, and may broadcast indications of link availability to the functional units coupled to the link. Responsive to a software request to shut down a given link, or a hardware initiated shutdown of one of the functional units coupled to the link, the link state machine may broadcast and indication that the link is unavailable.
Abstract:
An apparatus for synchronizing two clock signals is disclosed. The apparatus may include a selection unit and circuitry. The selection unit may be configured to select a first or second clock signal as an output clock signal. A frequency of the first clock signal may be less than a frequency of the second clock signal. The circuitry may be configured to send a first signal to the selection unit, causing the selection unit to select the first clock signal. The circuitry may also be configured to send a second signal to the selection unit, causing the selection unit to select a subset of clock pulses of the second clock signal as the output clock signal. The subset of clock pulses of the second clock signal may include a clock pulse of the second clock signal corresponding to a transition of the first clock signal.
Abstract:
An apparatus for synchronizing two clock signals is disclosed. The apparatus may include a selection unit and circuitry. The selection unit may be configured to select a first or second clock signal as an output clock signal. A frequency of the first clock signal may be less than a frequency of the second clock signal. The circuitry may be configured to send a first signal to the selection unit, causing the selection unit to select the first clock signal. The circuitry may also be configured to send a second signal to the selection unit, causing the selection unit to select a subset of clock pulses of the second clock signal as the output clock signal. The subset of clock pulses of the second clock signal may include a clock pulse of the second clock signal corresponding to a transition of the first clock signal.
Abstract:
An interface emulator for an IC is disclosed. An interface emulator includes a first first-in, first-out memory (FIFO) and a second FIFO. The first FIFO is coupled to receive data from an access port and a second FIFO coupled to receive data from at least one functional unit in the IC. The access port may be coupled to a device that is external to the IC. The external device may write information into the first FIFO, and this information may subsequently be read by a functional unit in the IC. Similarly, the functional unit may write information into the second FIFO, with the external device subsequently reading the information. Information may be written into the FIFOs in accordance with a predefined protocol. Thus, a particular type of interface may be emulated even though the physical connection and supporting circuitry for that interface is not otherwise implemented in the IC.
Abstract:
Embodiments of an apparatus are disclosed that may allow for changing the frequency of a clock coupled to a functional block within an integrated circuit. The apparatus may include a plurality of clock dividers and a multiplex circuit. Each of the plurality of clock dividers may divide the frequency of a base clock signal be a respective one of a plurality of divisors. The multiplex circuit may be configured to receive a plurality of selection signals, select an output from one of the plurality of clock dividers dependent upon the received selection signals, and coupled the selected output of the plurality of clock dividers to the functional block.
Abstract:
Embodiments of an apparatus are disclosed that may allow for changing the frequency of a clock coupled to a functional block within an integrated circuit. The apparatus may include a plurality of clock dividers and a multiplex circuit. Each of the plurality of clock dividers may divide the frequency of a base clock signal be a respective one of a plurality of divisors. The multiplex circuit may be configured to receive a plurality of selection signals, select an output from one of the plurality of clock dividers dependent upon the received selection signals, and coupled the selected output of the plurality of clock dividers to the functional block.
Abstract:
A method and apparatus for dynamic clock and power gating and decentralized wakeups is disclosed. In one embodiment, an integrated circuit (IC) includes power-manageable functional units and a power management unit. Each of the power manageable functional units is configured to convey a request to enter a low power state to the power management unit. The power management unit may respond by causing a requesting functional unit to enter the low power state. Should another functional unit initiate a request to communicate with a functional unit currently in the low power state, it may send a request to that functional unit. The receiving functional unit may respond to the request by exiting the low power state and resuming operation in the active state.