摘要:
Illumination assemblies, components, and related methods are described. An illumination assembly can include at least one solid state light-emitting device, and at least one light guide including a light homogenization region configured to receive light emitted by the solid state light-emitting device and including a light output boundary. The light homogenization region substantially uniformly distributes light outputted over the light output boundary. A wavelength converting material can be disposed within at least a portion of the light homogenization region. In some assemblies, a light extraction region can be configured to receive light from the light output boundary of the light homogenization region, and can have a length along which received light propagates and an emission surface through which light is emitted. The light extraction region can include a wavelength converting material disposed within at least a portion of the light extraction region.
摘要:
Illumination assemblies, components, and related methods are described. An illumination assembly can include at least one solid state light-emitting device, an emission surface through which light is emitted, and a wavelength converting material that wavelength converts at least some light emitted by the solid state light-emitting device. The wavelength converting material can have a first density per unit area of the emission surface at a first location and a second density per unit area of the emission surface at a second location, wherein the second density is substantially different from the first density, and wherein the density per unit area is defined with a 1×1 cm2 averaging area. Another illumination assembly can include a light guide configured to receive light emitted by a solid state light-emitting device. The light guide can have a length along which received light propagates and an emission surface substantially parallel to the length of the light guide and through which light is emitted. A wavelength converting material can have a density per unit area of the emission surface that substantially increases along the length of the light guide.
摘要:
Wavelength converting light-emitting devices and methods of making the same are provided. In some embodiments, the devices include a phosphor material region designed to convert the wavelength of emitted light.
摘要:
Light-emitting devices (e.g., LEDs) and methods associated with such devices are provided. In some embodiments, the device includes a distribution of light-generating portions (including active regions) that are spatially localized and separated (e.g., horizontally or vertically) from one or more patterned light extraction portions. This arrangement can allow light generated by the device to propagate and pass through regions of low absorption (e.g., light-extraction portions) rather than in regions of high absorption (e.g., light-generating portions), which can enhance light emission.
摘要:
Light-emitting devices are described herein. Some embodiments relate to light-emitting diodes with light-emitting sections that are independently electrically addressable. The devices may be used in a variety of applications including illumination and general lighting.
摘要:
The device of the present invention comprises a limiting face configured to limit a movement of a stop arm of a toilet flush system actuator unit, that may be mounted to a toilet flush valve body by at least one retention piece. A fulcrum piece may also be provided, the fulcrum piece including a fulcrum hole adaptably sized to receive a fulcrum pin of a toilet flush system actuator unit, such that when the device is installed on a broken toilet flush valve the device will substitute, or provide support, for the support arms with fulcrum holes and stop tab for the toilet tilt valve.
摘要:
Illumination assemblies, components, and related methods are described. An illumination assembly can include at least one solid state light-emitting device, an emission surface through which light is emitted, and a wavelength converting material that wavelength converts at least some light emitted by the solid state light-emitting device. The wavelength converting material can have a first density per unit area of the emission surface at a first location and a second density per unit area of the emission surface at a second location, wherein the second density is substantially different from the first density, and wherein the density per unit area is defined with a 1×1 cm2 averaging area. Another illumination assembly can include a light guide configured to receive light emitted by a solid state light-emitting device. The light guide can have a length along which received light propagates and an emission surface substantially parallel to the length of the light guide and through which light is emitted. A wavelength converting material can have a density per unit area of the emission surface that substantially increases along the length of the light guide.