Abstract:
In at least one embodiment, the controller senses a leading edge, phase cut AC input voltage value to a switching power converter during a cycle of the AC input voltage. The controller senses the voltage value at a time prior to a zero crossing of the AC input voltage and utilizes the voltage value to determine the approximate zero crossing. In at least one embodiment, by determining an approximate zero crossing of the AC input voltage, the controller is unaffected by any disturbances of the dimmer that could otherwise make detecting the zero crossing problematic. The particular way of determining an approximate zero crossing is a matter of design choice. In at least one embodiment, the controller approximates the AC input voltage using a function that estimates a waveform of the AC input voltage and determines the approximate zero crossing of the AC input voltage from the approximation of the AC input voltage.
Abstract:
In accordance with methods and systems of the present disclosure, a mobile device may include an enclosure adapted such that the enclosure is readily transported by a user of the mobile device, a speaker associated with the enclosure for generating sound, and a controller within the enclosure, communicatively coupled to the speaker. The controller may be configured to receive a signal from the speaker, the signal induced at least in part by sound incident on the speaker other than sound generated by the speaker and process the signal.
Abstract:
A turn-off transition time period, also referred to as a reverse recovery time period, may be compensated for by a controller of a power stage including a bipolar junction transistor (BJT). The reverse recovery time period may be measured in one switching cycle and a subsequent switching cycle may include compensations based on the measured reverse recovery time period. That is the switching on and off of the BJT may be compensated to obtain a desired average output current to a load. When the reverse recovery time period is known, an error in the peak current obtained due to the reverse recovery time period may be calculated. The calculated error may be used to offset the target peak current for controlling the switching of the BJT to begin a turn-off transition of the BJT earlier in a switching cycle and thus reduce error in peak current at the BJT.
Abstract:
In accordance with embodiments of the present disclosure, a digital microphone system may include a microphone transducer and a digital processing system. The microphone transducer may be configured to generate an analog input signal indicative of audio sounds incident upon the microphone transducer. The digital processing system may be configured to convert the analog input signal into a first digital signal having a plurality (e.g., more than 3) of quantization levels, and in the digital domain, process the first digital signal to compress the first digital signal into a second digital signal having fewer quantization levels (e.g., +1, 0, −1) than that of the first digital signal.
Abstract:
An electronic system and method include a controller to actively control transfer of excess energy to an auxiliary-winding of an auxiliary power dissipation circuit. The excess energy is a transfer of energy from a primary winding of a switching power converter to the auxiliary-winding of the auxiliary power dissipation circuit. In at least one embodiment, the electronic system is a lighting system that includes a triac-based dimmer. The excess energy is energy drawn through the primary-side winding of the switching power converter to provide operational compatibility between a dimmer through which a power supply provides energy to the switching power converter and a load to which the switching power converter provides energy.
Abstract:
Methods and systems to provide compatibility between a load and a secondary winding of an electronic transformer driven by a leading-edge dimmer may include: (a) responsive to determining that energy is available from the electronic transformer, drawing a requested amount of power from the electronic transformer thus transferring energy from the electronic transformer to an energy storage device in accordance with the requested amount of power; and (b) transferring energy from the energy storage device to the load at a rate such that a voltage of the energy storage device is regulated within a predetermined voltage range.
Abstract:
A light emitting diode (LED) lighting system includes a PFC and output voltage controller and a LED lighting power system. The controller advantageously operates from an auxiliary voltage less than a link voltage generated by the LED lighting power system. The common reference voltage allows all the components of lighting system to work together. A power factor correction switch and an LED drive current switch are coupled to the common reference node and have control node-to-common node, absolute voltage that allows the controller to control the conductivity of the switches. The LED lighting system can utilize feed forward control to concurrently modify power demand by the LED lighting power system and power demand of one or more LEDs. The LED lighting system can utilize a common current sense device to provide a common feedback signal to the controller representing current in at least two of the LEDs.
Abstract:
A system and method for providing compatibility between a load and a secondary winding of a magnetic transformer driven at its primary winding by a trailing-edge dimmer may include determining from a magnetic transformer secondary signal a period of a half-line cycle of an output signal of the dimmer, determining from the magnetic transformer secondary signal an estimated occurrence of an end of a phase-cut angle of the dimmer, and generating a driving signal to the load based on the period and the estimated occurrence of the end of the phase-cut angle. A lamp assembly may include a lamp for generating light and a controller for controlling operation of the lamp, the controller comprising a timing control circuit for determining a period of a periodic signal received by the lamp assembly.
Abstract:
A system is disclosed for controlling motor switching in a sensorless BLDC motor having a set of three stator windings. A controller unit includes a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage having a plurality of switches receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with an asymmetric pulse width modulation signal and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit also communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
Abstract:
A system and method map dimming levels of a lighting dimmer to light source control signals using a predetermined lighting output function. The dimmer generates a dimmer output signal value. At any particular period of time, the dimmer output signal value represents one of multiple dimming levels. In at least one embodiment, the lighting output function maps the dimmer output signal value to a dimming value different than the dimming level represented by the dimmer output signal value. The lighting output function converts a dimmer output signal values corresponding to measured light levels to perception based light levels. A light source driver operates a light source in accordance with the predetermined lighting output function. The system and method can include a filter to modify at least a set of the dimmer output signal values prior to mapping the dimmer output signal values to a new dimming level.