Abstract:
Devices under test (DUTs) can be tested in a test system that includes an aligner and test cells. A DUT can be moved into and clamped in an aligned position on a carrier in the aligner. In the align position, electrically conductive terminals of the DUT can be in a predetermined position with respect to carrier alignment features of the carrier. The DUT/carrier combination can then be moved from the aligner into one of the test cells, where alignment features of the carrier are mechanically coupled with alignment features of a contactor in the test cell. The mechanical coupling automatically aligns terminals of the DUT with probes of the contactor. The probes thus contact and make electrical connections with the terminals of the DUT. The DUT is then tested. The aligner and each of the test cells can be separate and independent devices so that a DUT can be aligned in the aligner while other DUTs, having previously been aligned to a carrier in the aligner, are tested in a test cell.
Abstract:
An electrically conductive contact element can include a first base and a second base with elongate, spaced apart leaves between the bases. A first end of each leaf can be coupled to the first base and an opposite second end of the leaf can be coupled to the second base. A body of the leaf between the first end and the second end can be sufficiently elongate to respond to a force through said contact element substantially parallel with the first axis and the second axis by first compressing axially while said force is less than a buckling force and then bending while said force is greater than the buckling force.
Abstract:
Embodiments of methods and apparatus for aligning a probe card assembly in a test system are provided herein. In some embodiments, an apparatus for testing devices may include a probe card assembly having a plurality of probes, each probe having a tip for contacting a device to be tested, and having an identified set of one or more features that are preselected in accordance with selected criteria for aligning the probe card assembly within a prober after installation therein. In some embodiments, the identity of the identified set of one or more features may be communicated to the prober to facilitate a global alignment of the probe card assembly that minimizes an aggregate misalignment of all of the tips in the probe card assembly.
Abstract:
Methods and apparatus for testing semiconductor devices are provided herein. In some embodiments, an assembly for testing semiconductor devices can include a probe card assembly; and a thermal barrier disposed proximate an upper surface of the probe card assembly, the thermal barrier can restrict thermal transfer between tester side boundary conditions and portions of the probe card assembly disposed beneath the thermal barrier.
Abstract:
Embodiments of methods and apparatus for aligning a probe card assembly in a test system are provided herein. In some embodiments, an apparatus for testing devices may include a probe card assembly having a plurality of probes, each probe having a tip for contacting a device to be tested, and having an identified set of one or more features that are preselected in accordance with selected criteria for aligning the probe card assembly within a prober after installation therein. In some embodiments, the identity of the identified set of one or more features may be communicated to the prober to facilitate a global alignment of the probe card assembly that minimizes an aggregate misalignment of all of the tips in the probe card assembly
Abstract:
A stiffener structure, a wiring substrate, and a frame having a major surface disposed in a stack can be part of a probe card assembly. The wiring substrate can be disposed between the frame and the stiffener structure, and probe substrates can be coupled to the frame by one or more non-adjustably fixed coupling mechanisms. Each of the probe substrates can have probes that are electrically connected through the probe card assembly to an electrical interface on the wiring substrate to a test controller. The non-adjustably fixed coupling mechanisms can be simultaneously stiff in a first direction perpendicular to the major surface and flexible in a second direction generally parallel to the major surface.
Abstract:
A first device and a second device can include at least one alignment feature and at least one corresponding constraint. The alignment feature and the constraint can be configured to align the first device and the second device when the alignment feature is inserted into the constraint. The alignment feature and the constraint can be further configured to direct relative movement between the first device and the second device due to relative thermal expansion or contraction between the first device and the second device. The directed relative movement can keep the first device and the second device aligned over a predetermined temperature range.
Abstract:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener assembly for use with testing devices can be part of a probe card assembly that can include a stiffener assembly comprising an upper stiffener coupled to a plurality of lower stiffeners; and a substrate constrained between the upper stiffener and the plurality of lower stiffeners, the stiffener assembly restricting non-planar flex of the substrate while facilitating radial movement of the substrate with respect to the stiffener assembly.
Abstract:
A stiffener assembly for use with testing devices is provided herein. In some embodiments, a stiffener for use with testing devices includes an inner member; an outer member disposed in a predominantly spaced apart relation to the inner member; and a plurality of alignment mechanisms for orienting the inner and outer members with respect to each other, wherein the alignment mechanisms transfer forces applied to a lower surface of the inner member to the outer member and provide the predominant conductive heat transfer passageway between the inner and outer members.
Abstract:
A probe card assembly can comprise a support structure to which a plurality of probes can be directly or indirectly attached. The probes can be disposed to contact an electronic device to be tested. The probe card assembly can further comprise actuators, which can be configured to change selectively an attitude of the support structure with respect to a reference structure. The probe card assembly can also comprise a plurality of lockable compliant structures. While unlocked, the lockable compliant structures can allow the support structure to move with respect to the reference structure. While locked, however, the compliant structures can provide mechanical resistance to movement of the support structure with respect to the reference structure.