摘要:
A lateral super junction JFET is formed from stacked alternating P type and N type semiconductor layers over a P-epi layer supported on an N+ substrate. An N+ drain column extends down through the super junction structure and the P-epi to connect to the N+ substrate to make the device a bottom drain device. N+ source column and P+ gate column extend through the super junction but stop at the P-epi layer. A gate-drain avalanche clamp diode is formed from the bottom the P+ gate column through the P-epi to the N+ drain substrate.
摘要翻译:横向超结JFET由负载在N +衬底上的P表面层上的堆叠的交替P型和N型半导体层形成。 N +漏极柱向下延伸穿过超结结构和P-epi以连接到N +衬底以使器件成为底部漏极器件。 N +源极柱和P +栅极柱延伸穿过超级结,但在P-epi层处停止。 栅极 - 漏极雪崩钳位二极管从P +栅极底部通过P-epi到N +漏极衬底形成。
摘要:
A semiconductor device formed on a semiconductor substrate includes: an epitaxial layer overlaying the semiconductor substrate; a drain formed on back of the semiconductor substrate; a drain region that extends into the epitaxial layer; and an active region. The active region includes: a body disposed in the epitaxial layer, having a body top surface; a source embedded in the body, extending from the body top surface into the body; a gate trench extending into the epitaxial layer; a gate disposed in the gate trench; an active region contact trench extending through the source and the body into the drain region; an active region contact electrode disposed within the active region contact trench, wherein the active region contact electrode and the drain region form a Schottky diode; and a Schottky barrier controlling layer.
摘要:
A low capacitance transient voltage suppressor with reduced clamping voltage includes an n+ type substrate, a first epitaxial layer on the substrate, a buried layer formed within the first epitaxial layer, a second epitaxial layer on the first epitaxial layer, and an implant layer formed within the first epitaxial layer below the buried layer. The implant layer extends beyond the buried layer. A first trench is at an edge of the buried layer and an edge of the implant layer. A second trench is at another edge of the buried layer and extends into the implant layer. A third trench is at another edge of the implant layer. Each trench is lined with a dielectric layer. A set of source regions is formed within a top surface of the second epitaxial layer. The trenches and source regions alternate. A pair of implant regions is formed in the second epitaxial layer.
摘要:
Fabricating a semiconductor device includes forming a mask on a substrate having a top substrate surface; forming a gate trench in the substrate, through the mask; depositing gate material in the gate trench; removing the mask to leave a gate structure; implanting a body region; implanting a source region; forming a source body contact trench having a trench wall and a trench bottom; forming a plug in the source body contact trench, wherein the plug extends below a bottom of the body region; and disposing conductive material in the source body contact trench, on top of the plug.
摘要:
An integrated structure includes a plurality of split-gate trench MOSFETs. A plurality of trenches is formed within the silicon carbide substrate composition, each trench is lined with a passivation layer, each trench being substantially filled with a first conductive region a second conductive region and an insulating material having a dielectric constant similar to a dielectric constant of the silicon carbide substrate composition. The first conductive region is separated from the passivation layer by the insulating material. The first and second conductive regions form gate regions for each trench MOSFET. The first conductive region is separated from the second conductive region by the passivation layer. A doped body region of a first conductivity type formed at an upper portion of the substrate composition and a doped source region of a second conductivity type formed inside the doped body region.
摘要:
A Schottky diode includes a Schottky barrier and a plurality of dopant regions disposed near the Schottky barrier as floating islands to function as PN junctions for preventing a leakage current generated from a reverse voltage. At least a trench opened in a semiconductor substrate with a Schottky barrier material disposed therein constitutes the Schottky barrier. The Schottky barrier material may also be disposed on sidewalls of the trench for constituting the Schottky barrier. The trench may be filled with the Schottky barrier material composed of Ti/TiN or a tungsten metal disposed therein for constituting the Schottky barrier. The trench is opened in a N-type semiconductor substrate and the dopant regions includes P-doped regions disposed under the trench constitute the floating islands. The P-doped floating islands may be formed as vertical arrays under the bottom of the trench.
摘要:
This invention discloses an insulated gate bipolar transistor (IGBT) device formed in a semiconductor substrate. The IGBT device has a split-shielded trench gate that includes an upper gate segment and a lower shield segment. The IGBT device may further include a dummy trench filled with a dielectric layer disposed at a distance away from the split-shielded trench gate. The IGBT device further includes a body region extended between the split-shielded trench gate and the dummy trench encompassing a source region surrounding the split-shielded trench gate near a top surface of the semiconductor substrate. The IGBT device further includes a heavily doped N region disposed below the body region and above a source-dopant drift region above a bottom body-dopant collector region at a bottom surface of the semiconductor substrate. In an alternative embodiment, the IGBT may include a planar gate with a trench shield electrode.
摘要:
A semiconductor power device supported on a semiconductor substrate of a first conductivity type with a bottom layer functioning as a bottom electrode and an epitaxial layer overlying the bottom layer with a same conductivity type as the bottom layer. The semiconductor power device includes a plurality of FET cells and each cell further includes a body region of a second conductivity type extending from a top surface into the epitaxial layer. The body region encompasses a heavy body dopant region of second conductivity type. An insulated gate is disposed on the top surface of the epitaxial layer, overlapping a first portion of the body region. A barrier control layer is disposed on the top surface of the epitaxial layer next to the body region away from the insulated gate. A conductive layer overlies the top surface of the epitaxial layer covering a second portion of the body region and the heavy body dopant region extending over the barrier control layer forming a Schottky junction diode.
摘要:
This invention discloses a semiconductor power device that includes an active cell area having a plurality of power transistor cells. Each of said power transistor cells has a planar Schottky diode that includes a Schottky junction barrier metal covering areas above gaps between separated body regions between two adjacent power transistor cells. The separated body regions further provide a function of adjusting a leakage current of said Schottky diode in each of said power transistor cells. Each of the planar Schottky diodes further includes a Shannon implant region disposed in a gap between the separated body regions of two adjacent power transistor cells for further adjusting a leakage current of said Schottky diode. Each of the power transistor cells further includes heavy body doped regions in the separated body regions next to source regions surrounding said Schottky diode forming a junction barrier Schottky (JBS) pocket region.
摘要:
A semiconductor device is formed on a semiconductor substrate. The device comprises a drain, an epitaxial layer overlaying the drain, and an active region. The active region comprises a body disposed in the epitaxial layer, having a body top surface and a body bottom surface, a source embedded in the body, extending from the body top surface into the body, a gate trench extending into the epitaxial layer, a gate disposed in the gate trench, an active region contact trench extending through the source and at least part of the body into the drain, wherein the active region contact trench is shallower than the body bottom surface, and an active region contact electrode disposed within the active region contact trench.