摘要:
The invention relates to a method for fabricating a drift zone of a vertical semiconductor component and to a vertical semiconductor component having the following features: a semiconductor body (100) having a first side (101) and a second side (102), a drift zone (30) of a first conduction type which is arranged in the region between the first and the second sides (101, 102) and is formed for the purpose of taking up a reverse voltage, a field electrode arrangement arranged in the drift zone (30) and having at least one electrically conducted field electrode (40; 40A–40E; 90A–90J) arranged in a manner insulated from the semiconductor body (100), an electrical potential of the at least one field electrode (40; 40A–40E; 90A–90J) varying in the vertical direction of the semiconductor body (100) at least when a reverse voltage is applied.
摘要:
A trench MOS-transistor includes a body region strengthened by an implantation area that faces the drain region to increase the avalanche resistance.
摘要:
A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
摘要:
A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
摘要:
A field plate trench transistor having a semiconductor body is disclosed. In one embodiment, the semiconductor has a trench structure and an electrode structure embedded in the trench structure. The electrode structure being electrically insulated from the semiconductor body by an insulation structure and having a gate electrode structure and a field electrode structure. The field plate trench transistor has a voltage divider configured such that the field electrode structure is set to a potential lying between source and drain potentials.
摘要:
The invention relates to a method for fabricating a drift zone of a vertical semiconductor component and to a vertical semiconductor component having the following features: a semiconductor body (100) having a first side (101) and a second side (102), a drift zone (30) of a first conduction type which is arranged in the region between the first and the second sides (101, 102) and is formed for the purpose of taking up a reverse voltage, a field electrode arrangement arranged in the drift zone (30) and having at least one electrically conducted field electrode (40; 40A-40E; 90A-90J) arranged in a manner insulated from the semiconductor body (100), an electrical potential of the at least one field electrode (40; 40A-40E; 90A-90J) varying in the vertical direction of the semiconductor body (100) at least when a reverse voltage is applied.
摘要:
A bipolar semiconductor device and method are provided. One embodiment provides a bipolar semiconductor device including a first semiconductor region of a first conductivity type having a first doping concentration, a second semiconductor region of a second conductivity type forming a pn-junction with the first semiconductor region, and a plurality of third semiconductor regions of the first conductivity type at least partially arranged in the first semiconductor region and having a doping concentration which is higher than the first doping concentration. Each of the third semiconductor regions is provided with at least one respective junction termination structure.
摘要:
A semiconductor component comprising a semiconductor body, a channel zone in the semiconductor body, a channel control electrode adjacent to the channel zone, and a dielectric layer between the channel zone and the channel control electrode, wherein the dielectric layer has a relative dielectric constant ∈r with a negative temperature coefficient.
摘要:
A semiconductor structure is formed comprising a plurality of columns doped with alternating dopants. The columns are separated by trenches, and the dopant is diffused in the doped columns. The trenches are filled with semiconductor material. Other embodiments may be described and claimed.
摘要:
A semiconductor device and production method is disclosed. In one embodiment, the semiconductor device includes a first electrode and a second electrode, located on surfaces of a semiconductor body, and an insulated gate electrode. The semiconductor body has a contact groove for the first electrode in an intermediate oxide layer. Highly doped zones of a first conduction type are located in edge regions of the source connection zone. Below the highly doped zones of the first conduction type, there are highly doped zones of a body zone with a complementary conduction type. In a central region of the source connection zone, the body zone has a net charge carrier concentration with a complementary conduction type which is lower than the charge carrier concentration in the edge regions of the source connection zone.