摘要:
A bipolar semiconductor device and method are provided. One embodiment provides a bipolar semiconductor device including a first semiconductor region of a first conductivity type having a first doping concentration, a second semiconductor region of a second conductivity type forming a pn-junction with the first semiconductor region, and a plurality of third semiconductor regions of the first conductivity type at least partially arranged in the first semiconductor region and having a doping concentration which is higher than the first doping concentration. Each of the third semiconductor regions is provided with at least one respective junction termination structure.
摘要:
A semiconductor component comprising a semiconductor body, a channel zone in the semiconductor body, a channel control electrode adjacent to the channel zone, and a dielectric layer between the channel zone and the channel control electrode, wherein the dielectric layer has a relative dielectric constant ∈r with a negative temperature coefficient.
摘要:
A semiconductor device includes a first trench and a second trench extending into a semiconductor body from a surface. A body region of a first conductivity type adjoins a first sidewall of the first trench and a first sidewall of the second trench, the body region including a channel portion adjoining to a source structure and being configured to be controlled in its conductivity by a gate structure. The channel portion is formed at the first sidewall of the second trench and is not formed at the first sidewall of the first trench. An electrically floating semiconductor zone of the first conductivity type adjoins the first trench and has a bottom side located deeper within the semiconductor body than the bottom side of the body region.
摘要:
A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
摘要:
Disclosed is a method for controlling the recombination rate in the base region of a bipolar semiconductor component, and a bipolar semiconductor component.
摘要:
A semiconductor device in the form of an IGBT has a front side contact, a rear side contact, and a semiconductor volume disposed between the front side contact and the rear side contact. The semiconductor volume includes a field stop layer for spatially delimiting an electric field that can be formed in the semiconductor volume. The semiconductor volume further includes a plurality of semiconductor zones, the plurality of semiconductor zones spaced apart from each other and each inversely doped with respect to adjacent areas. The plurality of semiconductor zones are located within the field stop layer.
摘要:
A semiconductor component with charge compensation structure has a semiconductor body having a drift path between two electrodes. The drift path has drift zones of a first conduction type, which provide a current path between the electrodes in the drift path, while charge compensation zones of a complementary conduction type constrict the current path of the drift path. For this purpose, the drift path has two alternately arranged, epitaxially grown diffusion zone types, the first drift zone type having monocrystalline semiconductor material on a monocrystalline substrate, and a second drift zone type having monocrystalline semiconductor material in a trench structure, with complementarily doped walls, the complementarily doped walls forming the charge compensation zones.
摘要:
In a method for producing a semiconductor body, impurities which act as recombination centers in the semiconductor body and form a recombination zone are introduced into the semiconductor body during the process of producing the semiconductor body. In a semiconductor component, comprising a semiconductor body having a front surface and an opposite rear surface, and also a recombination zone formed by impurities between the front and rear surfaces, wherein the impurities act as recombination centres, the surface state density at the front and rear surfaces of the semiconductor body is just as high as the surface state density at a front and rear surface of an identical semiconductor body without a recombination zone.
摘要:
A semiconductor component is arranged in a semiconductor body and has at least one integrated radially symmetrical lateral resistance having a location-dependent sheet resistance, the radial dependence of which is preferably configured such that the differential resistance dR is radially constant or the power dissipated in the resistance is radially constant.
摘要:
A semiconductor device includes a first emitter region of a first conductivity type, a second emitter region of a second conductivity type complementary to the first type, a drift region of the second conductivity type, and a first electrode. The first and second emitter regions are arranged between the drift region and first electrode and each connected to the first electrode. A device cell of a cell region includes a body region of the first conductivity type adjoining the drift region, a source region of the second conductivity type adjoining the body region, and a gate electrode adjacent the body region and dielectrically insulated from the body region by a gate dielectric. A second electrode is electrically connected to the source and body regions. A parasitic region of the first conductivity type is disposed outside the cell region and includes at least one section with charge carrier lifetime reduction means.