摘要:
Dummy gates are removed from a pre-metal layer to produce a first opening (with a first length) and a second opening (with a second length longer than the first length). Work function metal for a metal gate electrode is provided in the first and second openings. Tungsten is deposited to fill the first opening and conformally line the second opening, thus leaving a third opening. The thickness of the tungsten layer substantially equals the length of the first opening. The third opening is filled with an insulating material. The tungsten is then recessed in both the first and second openings using a dry etch to substantially a same depth from a top surface of the pre-metal layer to complete the metal gate electrode. Openings left following the recess operation are then filled with a dielectric material forming a cap on the gate stack which includes the metal gate electrode.
摘要:
A method for forming an integrated circuit having a test macro using a multiple patterning lithography process (MPLP) is provided. The method includes forming an active area of the test macro having a first and second gate region and forming a first and second source/drain regions in the active area. The method also includes forming a first contact connected to the first gate region, a second contact connected to the second gate region, a third contact connected to the first source/drain region, and a forth contact connected to the source/drain region. The method further includes determining if an overlay shift has occurred during the formation of the active area by testing for a short between one or more of the first contact, the second contact, the third contact, or the fourth contact.
摘要:
A FinFET includes a semiconductor fin supporting a first transistor and a second transistor. A first transistor gate electrode extends over a first channel region of the fin and a second transistor gate electrode extends over a second channel region of the fin. Epitaxial growth material on a top of the fin forms a raised source region on a first side of the first transistor gate electrode, an intermediate region between a second side of the first transistor gate electrode and a first side of the second transistor gate electrode, and a raised drain region on a second side of the second transistor gate electrode. The first and second transistor gate electrodes are short circuit connected to each other, with the first transistor configured to have a first threshold voltage and the second transistor configured to have a second threshold voltage different from the first threshold voltage.
摘要:
Techniques for forming a metastable phosphorous P-doped silicon Si source drain contacts are provided. In one aspect, a method for forming n-type source and drain contacts includes the steps of: forming a transistor on a substrate; depositing a dielectric over the transistor; forming contact trenches in the dielectric that extend down to source and drain regions of the transistor; forming an epitaxial material in the contact trenches on the source and drain regions; implanting P into the epitaxial material to form an amorphous P-doped layer; and annealing the amorphous P-doped layer under conditions sufficient to form a crystalline P-doped layer having a homogenous phosphorous concentration that is greater than about 1.5×1021 atoms per cubic centimeter (at./cm3). Transistor devices are also provided utilizing the present P-doped Si source and drain contacts.
摘要:
A semiconductor device that a fin structure, and a gate structure present on a channel region of the fin structure. A composite spacer is present on a sidewall of the gate structure including an upper portion having a first dielectric constant, a lower portion having a second dielectric constant that is less than the first dielectric constant, and an etch barrier layer between sidewalls of the first and second portion of the composite spacer and the gate structure. The etch barrier layer may include an alloy including at least one of silicon, boron and carbon.
摘要:
A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.
摘要:
A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.
摘要:
A method for making a semiconductor device includes forming laterally spaced-apart semiconductor fins above a substrate. At least one dielectric layer is formed adjacent an end portion of the semiconductor fins and within the space between adjacent semiconductor fins. A pair of sidewall spacers is formed adjacent outermost semiconductor fins at the end portion of the semiconductor fins. The at least one dielectric layer and end portion of the semiconductor fins between the pair of sidewall spacers are removed. Source/drain regions are formed between the pair of sidewall spacers.
摘要:
A method for fabricating a dual silicide device includes growing source and drain (S/D) regions for an N-type device, forming a protection layer over a gate structure and the S/D regions of the N-type device and growing S/D regions for a P-type device. A first dielectric layer is conformally deposited and portions removed to expose the S/D regions. Exposed S/D regions for the P-type device are silicided to form a liner. A second dielectric layer is conformally deposited. A dielectric fill is formed over the second dielectric layer. Contact holes are opened through the second dielectric layer to expose the liner for the P-type device and expose the protection layer for the N-type device. The S/D regions for the N-type device are exposed by opening the protection layer. Exposed S/D regions adjacent to the gate structure are silicided to form a liner for the N-type device. Contacts are formed.
摘要:
A semiconductor device includes a fin patterned in a substrate; a gate disposed over and substantially perpendicular to the fin; a pair of epitaxial contacts including a III-V material over the fin and on opposing sides of the gate; and a channel region between the pair of epitaxial contacts under the gate including an undoped III-V material between doped III-V materials, the doped III-V materials including a dopant in an amount in a range from about 1e18 to about 1e20 atoms/cm3 and contacting the epitaxial contacts.