Abstract:
At least one method, apparatus and system disclosed herein for forming a finFET device having a pass-through structure. A first gate structure and a second gate structure are formed on a semiconductor wafer. A first active area is formed on one end of the first and second gate structures. A second active area is formed on the other end of the first and second gate structures. A trench silicide (TS) structure self-aligned to the first and second gate structures is formed. The TS structure is configured to operatively couple the first active area to the second active area.
Abstract:
At least one method, apparatus and system disclosed herein for forming a finFET device having a pass-through structure. A first gate structure and a second gate structure are formed on a semiconductor wafer. A first active area is formed on one end of the first and second gate structures. A second active area is formed on the other end of the first and second gate structures. A trench silicide (TS) structure self-aligned to the first and second gate structures is formed. The TS structure is configured to operatively couple the first active area to the second active area.
Abstract:
Methods for performing design rule checking of a circuit design are provided. The methods include, for instance: providing a circuit design for an integrated circuit layer, in which the circuit design includes a plurality of design lines oriented in a particular direction; and automatically performing a design rule check of the circuit design, which may include forming a verification pattern for the circuit design, the verification pattern comprising a plurality of verification lines and a plurality of verification regions, wherein one or more verification regions are associated with and connected to one verification line of the plurality of verification lines, and checking the verification pattern for any verification line overlapping a verification region. The circuit design may be considered to fail the design rule check if an end of one verification line overlaps any verification region associated with another verification line of the verification pattern.
Abstract:
Embodiments described herein provide approaches for improved circuit routing using a wide-edge pin. Specifically, provided is an integrated circuit (IC) device comprising a standard cell having a first metal layer (M1) pin coupled to a second metal layer (M2) wire at a via. The M1 pin has a width greater than a width of the via sufficient to satisfy an enclosure rule for the via, while the M1 pin extends vertically past the via a distance substantially equal to or greater than zero. This layout increases the number of available pin access points within the standard cell and thus improves routing efficiency and chip size.
Abstract:
Methods for processes to form and use merged spacers in fin generation and the resulting devices are disclosed. Embodiments include providing first and second mandrels separated from each other across adjacent cells on a Si layer; forming first and second dummy-spacers and third and fourth dummy-spacers on opposite sides of the first and second mandrels, respectively; removing, through a block-mask, the first and fourth dummy spacers and a portion of the second and third dummy-spacers; forming first spacers on each exposed side of the mandrels and in between the second and third dummy-spacers, forming a merged spacer; removing the mandrels; removing a section of the merged-spacer; forming second spacers on all exposed sides of the first spacers and the merged-spacer; removing the merged-spacer and the first spacers; removing exposed sections of the Si layer through the second spacers; and removing the second spacers to reveal Si fins.
Abstract:
A method of forming metal routing in an IC device utilizing a cut mask in conjunction with a block mask is disclosed. Embodiments include forming a hard-mask layer on an upper surface of a silicon-oxide layer; forming spaced parallel mandrels on an upper surface of the hard-mask; forming spacers on opposite sides of each mandrel, removing the mandrels, forming alternating mandrel and non-mandrel spaces; forming block-mask portions over the mandrel and non-mandrel spaces; removing exposed sections of the hard-mask exposing sections of the silicon-oxide, removing the block-mask portions; forming a cut-mask with openings shorter than the block-mask portions over the upper surface of the hard-mask where the block-mask portions had been; removing the hard-mask through the cut-mask openings, removing the cut-mask; forming cavities in exposed regions of the silicon-oxide; removing the spacers and any remaining hard-mask; and forming metal lines in the cavities.
Abstract:
At least one method disclosed herein involves creating an overall pattern layout for an integrated circuit that is to be manufactured using a self-aligned double patterning (SADP) process, forming a first metal feature having a first width on a first track of a metal layer using the SADP process, forming a second metal feature having a second width on a second track of the metal layer. The second track is adjacent to the first track. The method also includes forming an electrical connection between the first metal feature and the second metal feature to provide an effectively single metal pattern having a third width that is the sum of the first and second widths, rendering the first and second features decomposable using the SADP process; and decomposing e overall pattern layout with the first and second metal features into a mandrel mask pattern and a block mask pattern.
Abstract:
One method disclosed herein involves, among other things, generating a set of mandrel mask rules, block mask rules and a virtual, software-based non-mandrel-metal mask. The method also includes creating a set of virtual non-mandrel mask rules that is a replica of the mandrel mask rules, generating a set of metal routing design rules based upon the mandrel mask rules, the block mask rules and the virtual non-mandrel mask rules, generating the circuit routing layout based upon the metal routing design rules, decomposing the circuit routing layout into a mandrel mask pattern and a block mask pattern, generating a first set of mask data corresponding to the mandrel mask pattern, and generating a second set of mask data corresponding to the block mask pattern.
Abstract:
A method for efficient off-track routing and the resulting device are disclosed. Embodiments include: providing a hardmask on a substrate; providing a plurality of first mandrels on the hardmask; providing a first spacer on each side of each of the first mandrels; providing a plurality of first non-mandrel regions of the substrate being separated from the first mandrels and between two of the first spacers, each of the first mandrels, first non-mandrel regions, and first spacers having a width equal to a distance; and providing a second mandrel having a width of at least twice the distance and being separated from one of the first non-mandrel regions by a second spacer.
Abstract:
Embodiments described herein provide approaches for improving a standard cell connection for circuit routing. Specifically, provided is an IC device having a plurality of cells, a first metal layer (M1) pin coupled to a contact bar extending from a first cell of the plurality of cells, and a second metal layer (M2) wire coupled to the contact bar, wherein the contact bar extends across at least one power rail. By extending the contact bar into an open area between the plurality of cells to couple the M1 pin and the M2 wire, routing efficiency and chip scaling are improved.