Abstract:
Memory cells comprising: a semiconductor substrate having a source region and a drain region disposed below a surface of the substrate and separated by a channel region; a tunnel dielectric structure disposed above the channel region, the tunnel dielectric structure comprising at least one layer having a hole-tunneling barrier height; a charge storage layer disposed above the tunnel dielectric structure; an insulating layer disposed above the charge storage layer; and a gate electrode disposed above the insulating layer are described along with arrays and methods of operation.
Abstract:
A 3D memory device includes a plurality of ridge-shaped stacks, in the form of multiple strips of conductive material separated by insulating material, arranged as bit lines which can be coupled through decoding circuits to sense amplifiers. Diodes are connected to the bit lines at either the string select of common source select ends of the strings. The strips of conductive material have side surfaces on the sides of the ridge-shaped stacks. A plurality of word lines, which can be coupled to row decoders, extends orthogonally over the plurality of ridge-shaped stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the semiconductor strips on the stacks and the word lines.
Abstract:
Technology is described herein for manufacturing a three-dimensional 3D stacked memory structure having multiple layers of single crystal silicon or other semiconductor. The multiple layers of single crystal semiconductor are suitable for implementing multiple levels of high performance memory cells.
Abstract:
An integrated circuit memory comprises a set of lines each line having parallel X direction line portions in a first region and Y direction line portions in a second region. The second region is offset from the first region. The lengths of the X direction line portions are substantially longer than the lengths of the Y direction line portions. The X direction and Y direction line portions have respective first and second pitches with the second pitch being at least 3 times larger than the first pitch. Contact pickup areas are at the Y direction line portions. In some examples, the lines comprise word lines or bit lines. The memory can be created using multiple patterning methods to create lines of material and then the parallel X direction line portions and parallel Y direction line portions.
Abstract:
An injection method for non-volatile memory cells with a Schottky source and drain is described. Carrier injection efficiency is controlled by an interface characteristic of silicide and silicon. A Schottky barrier is modified by controlling an overlap of a gate and a source/drain and by controlling implantation, activation and/or gate processes.
Abstract:
A 3D memory device includes a plurality of ridges, in some embodiments ridge-shaped, in the form of multiple strips of conductive material separated by insulating material, arranged as bit lines which can be coupled through decoding circuits to sense amplifiers. The strips of conductive material have side surfaces on the sides of the stacks. A plurality of conductive lines arranged as word lines which can be coupled to row decoders, extends orthogonally over the plurality of stacks. The conductive lines conform to the surface of the stacks. Memory elements lie in a multi-layer array of interface regions at cross-points between side surfaces of the semiconductor material strips on the stacks and the conductive lines. The memory elements are programmable, like the anti-fuses or charge trapping structures. In some embodiments, the 3D memory is made using only two critical masks for multiple layers. Some embodiments include a staircase-shaped structure positioned at ends of the semiconductor material strips. Some embodiments include SSL interconnects on a metal layer parallel to the semiconductor material strips, and further SSL interconnects on a higher metal layer, parallel to the word lines.
Abstract:
An integrated circuit of an array of nonvolatile memory cells has a dielectric stack layer over the substrate, and implanted regions in the substrate under the dielectric stack layer. The dielectric stack layer is continuous over a planar region, that includes locations of the dielectric stack layer that store nonvolatile data, such that these locations are accessed by word lines/bit lines.
Abstract:
A charge trapping floating gate is described with asymmetric tunneling barriers. The memory cell includes a source region and a drain region separated by a channel region. A first tunneling barrier structure is disposed above the channel region. A floating gate is disposed above the first tunneling barrier structure covering the channel region. A second tunneling barrier is disposed above the floating gate. A dielectric charge trapping structure disposed above the second tunneling barrier and a blocking dielectric structure is disposed above the charge trapping structure. A top conductive layer disposed above the top dielectric structure acts as a gate. The second tunneling barrier is a more efficient conductor of tunneling current, under bias conditions applied for programming and erasing the memory cell, than the first tunneling barrier structure.
Abstract:
A manufacturing method for stacked, non-volatile memory devices provides a plurality of bitline layers and wordline layers with charge trapping structures. The bitline layers have a plurality of bitlines formed on an insulating layer, such as silicon on insulator technologies. The wordline layers are patterned with respective pluralities of wordlines and charge trapping structures orthogonal to the bitlines.
Abstract:
A method of manufacturing a non-volatile semiconductor memory device includes forming a sub-gate without an additional mask. A low word-line resistance is formed by a metal silicide layer on a main gate of the memory device. In operation, application of a voltage to the sub-gate forms a transient state inversion layer that serves as a bit-line, so that no implantation is required to form the bit-line.