摘要:
Connector housings (11, 12) to be mounted on a printed circuit board (100) have a plurality of rows of contacts (13, 14) extending from wall surfaces of the housing (11, 12). These contacts (13, 14) are soldered to conductive pads (23) of a flexible circuit (20). The flexible circuit (20), bent in a generally U-shaped, about an insertion portion (31) of a metallic guide portion (30) which is to be inserted between rows of contacts (50) of a mating connector (40) for interconnection therebetween. The guide member (30) preferably engages a ground conductor (176) on the reverse surface of the flexible substrate and includes extending portions (142) to groundingly engage conductive member (43, 124) positioned at both ends of the housing. In an alternate embodiment strengthening plates may be adhered to the flexible circuit between the opposed arrays of conductive pads and ground contact pads.
摘要:
Information recording media enable images to be recorded and reproduced with high resolution, wherein oozing of liquid crystal material thereof is prevented and the information is recorded without unevenness. A first recording medium has an information recording layer comprising a liquid crystal phase and an ultraviolet curing resin phase. The information recording layer is stacked on an electrode layer provided on a substrate by coating a mixed solution of liquid crystal and ultraviolet curing resin material on the surface of the electrode layer and then irradiating the coating by irradiation with ultraviolet rays, thereby forming a cured skin layer of the resin material on the outer surface of the information recording layer. A second recording medium has a transparent electrode layer additionally provided on the information recording layer of the first recording medium. A third recording medium has an electrode layer, a photoconductive layer, an information recording layer, and an electrode layer, in successive order. A fourth recording medium has a transparent insulating layer or semiconductor layer interposed between the photoconductive layer and the information recording layer of the third recording medium. According to an information recording and reproducing method employing the first recording medium, a gradually increasing voltage is applied between a photosensitive member and the recording medium. As a result, the effective voltage applied to the liquid crystal layer can be raised, enabling increased modulation, improved contrast and responsiveness.
摘要:
A high-resistance compound semiconductor 12 is epitaxially grown on a low-resistance compound semiconductor 11 and a dielectric reflecting film 13 is formed thereon, thereby forming a monolithic sensor 10. As the low-resistance compound semiconductor 11, a compound semiconductor is used which has a large bandgap so as to enable probe light to pass therethrough without being absorbed and which has a lattice constant and a thermal expansion coefficient, which are close to those of the high-resistance compound semiconductor. In addition, since the low-resistance compound semiconductor 11 also serves as an electrode, a compound semiconductor which has a resistivity of 10.sup.+1 .OMEGA.cm or less is used. Since the shorter the wavelength of the probe light used, the larger the retardation change and the larger the signal output, a compound semiconductor which has a large bandgap is used as the high-resistance compound semiconductor 12 so that light of short wavelength can be used. The high-resistance compound semiconductor 12 is also required to have a large electrooptic constant and a resistivity of 10.sup.5 .OMEGA.cm or more.
摘要:
The present invention relates to an electrostatic information recording medium in which a charge retaining layer having high insulating properties is laminated on an electrode, and an electrostatic information recording/reproducing process wherein, while said electrostatic information recording medium is positioned in opposition to a photosensitive member on which a photoconductive layer is laminated, the recording medium is subjected to information exposure with the application of voltage between both electrodes to accumulate electrostatic charges thereon depending upon the dosage of said information exposure, and the electrostatic information thus accumulated is reproduced by potential reading.The present electrostatic information recording medium has an information density as expressed in terms of a high recording capacity of the order of 8.times.10.sup.8 bits/cm.sup.2, and makes it possible to process information in a planar state so that analog or digital information such as characters, line pictures, images, (0.1) information and sounds can be accumulated in the form of electrostatic charges. With the present electrostatic information recording medium, it is possible to obtain information of high quality and resolving power because of the information being accumulatable in electrostatic charge units. Due to its high charge retainability, it is further possible to store information permanently. Still further, it is possible to make inexpensive and simple recording/reproducing systems, since information can be output by reading local potentials of electrostatic latent images at any time and any scanning density.
摘要翻译:本发明涉及一种静电信息记录介质,其中具有高绝缘性的电荷保持层层压在电极上,以及静电信息记录/再现过程,其中当所述静电信息记录介质与感光构件相对置 在其上层叠有光电导层,根据所述信息曝光的剂量,通过施加两电极之间的电压来对记录介质进行信息曝光,以在其上累积静电电荷,并且通过潜在读数再现累积的静电信息。 本静电信息记录介质具有以8×10 8位/ cm 2的高记录容量表示的信息密度,并且使得可以在平面状态下处理信息,使得诸如字符,行等的模拟或数字信息 图像,图像,(0.1)信息和声音可以以静电电荷的形式累积。 利用本静电信息记录介质,由于信息可以在静电荷单元中累积,所以可以获得高质量和分辨能力的信息。 由于其高的电荷保持性,因此还可以永久地存储信息。 此外,由于可以通过在任何时间读取静电潜像的局部电位和任何扫描密度来输出信息,所以可以制造便宜且简单的记录/再现系统。
摘要:
A high-resistance compound semiconductor 12 is epitaxially grown on a low-resistance compound semiconductor 11 and a dielectric reflecting film 13 is formed thereon, thereby forming a monolithic sensor 10. As the low-resistance compound semiconductor 11, a compound semiconductor is used which has a large bandgap so as to enable probe light to pass therethrough without being absorbed and which has a lattice constant and a thermal expansion coefficient, which are close to those of the high-resistance compound semiconductor. In addition, since the low-resistance compound semiconductor 11 also serves as an electrode, a compound semiconductor which has a resistivity of 10.sup.+1 .OMEGA.cm or less is used. Since the shorter the wavelength of the probe light used, the larger the retardation change and the larger the signal output, a compound semiconductor which has a large bandgap is used as the high-resistance compound semiconductor 12 so that light of short wavelength can be used. The high-resistance compound semiconductor 12 is also required to have a large electrooptic constant and a resistivity of 10.sup.5 .OMEGA.cm or more.
摘要:
An electrostatic information recording medium according to this invention includes an inorganic oxide layer 3 and a photoconductive layer comprising a charge-generating layer 4 and a charge-transport layer 5 laminated onto an electrode 2 in this sequence, as illustrated in FIG. 1. To record information, the information is exposed to light while voltage is being applied between the electrode 3 and another opposite electrode, or alternatively voltage is applied therebetween while the information is being exposed to light.After information recording, the electrostatic information recording medium is uniformly electrified on its surface as by corona charging, whereby the information can be easily reproduced in the form of electrostatic information. This recording medium, if tone-developed, can be used as an original plate for electrostatic printing.
摘要:
In the information recording an reproducing method and apparatus according to the present invention, a piece of picture image information is recorded as an analog quantity or a digital quantity an information carrying medium in a planar manner at a high density, charge potential is read for outputting electric signals to correspond to the recorded picture image information and then the outputted signals are printed out by means of various display unit or output device, with high quality and high resolution as well as ease processing of the information. The information carrying medium provides a long period of storage of information and enables stored picture image information to be repeatedly reproduced with a picture quality according to need. Particularly, it is, according to the present invention, possible to read and output local potential of an information carrying medium with predetermined scanning density at a desired time, and so pictures of high quality may be output as a silver salt photograph is taken and reproduced by optically scanning the film. Thus, the present invention may be applied to a wide field including photographing, copying and printing.