Abstract:
Technology described herein provides carrier-monitoring (CM) signaling approaches that can be used by networks and/or mobile devices. An evolved Node B (eNB) can send an IncMon-support message indicating whether a network supports the increased-number-of-frequencies-to-monitor (IncMon) feature. A UE can apply a default CM configuration if the UE does not receive an IncMon-support message from the eNB. The eNB can use dedicated signaling or broadcast signaling to inform a UE of a default CM configuration or one or more adopted CM configurations that are used in the network. The eNB can also send a list of carriers that are to be monitored to the UE. The UE can also send UE-capability information to the eNB, such as a default CM configuration, an adopted CM configuration, or configurable configurations in different radio access technologies (RATs) supported by the UE.
Abstract:
Embodiments described herein relate generally to a communication between a user equipment (UE) and an evolved Node B (eNB) that are both running in Enhanced Coverage (EC) mode. The UE and eNB may communicate in a contention-based random access procedure having an EC level that may be used to determine the number of times an RA preamble may be sent, and one or more RA response opportunity windows that may be used to receive one or more RA responses. Other embodiments may be described and/or claimed.
Abstract:
Adaptive paging techniques for EC-capable devices are described. In one embodiment, for example, an apparatus may comprise at least one memory and logic for an evolved node B (eNB), at least a portion of the logic comprised in hardware coupled to the at least one memory, the logic to receive an S1 paging message comprising a user equipment (UE) identifier (ID) associated with a UE and an extended coverage (EC) capability indicator indicating that the UE is EC-capable and page the UE using an EC paging sequence based on receipt of the S1 paging message, the EC paging sequence to comprise a series of transmissions of a radio resource control (RRC) paging message, the logic to truncate the EC paging sequence based on a determination that the UE has responded to RRC paging. Other embodiments are described and claimed.
Abstract:
Apparatuses and methods for control of small data transmission by a user equipment (UE) are described herein. The UE may determine that data to be transmitted by the UE is small data if a size of the data is below a threshold. The UE may transmit a message indicating that the UE shall be transmitting small data responsive to determining that data to be transmitted by the UE is small data. The UE may receive a radio resource control (RRC) signal from an evolved Node B (eNodeB) that includes a logical channel identifier (LCID) of a small data radio bearer (SDRB) configured for transmission of small data. The UE may transmit small data on the SDRB subsequent to receiving the RRC signal from the eNodeB. The UE may refrain from transmitting other than small data on the SDRB. Other apparatuses and methods are described.
Abstract:
Embodiments of the present disclosure describe systems, devices, and methods for interworking between a universal mobile telecommunications system (UMTS) network and a wireless local area network (WLAN). Various embodiments may include utilizing traffic steering rules based on radio access network assistance parameters to perform traffic steering between the UMTS network and the WLAN. Other embodiments may be described or claimed.
Abstract:
User Equipment (UE) may skip the Access Class Barring (ACB) procedure for specific services, such as MMTEL voice, MMTEL video, and SMS. In one implementation, NAS layer of a UE may: receive, from an upper layer relative to the NAS layer, a request for a particular service type that is being originated by the UE; receive an indication, from a Radio Resource Control (RRC) layer of the UE, that access to a cell, associated with the UE, is barred; and bypass the indication that access to the cell is barred, when the particular service type matches a predetermined set of service types. The bypassing may include: requesting that the RRC layer establish an RRC connection for the service request, and notifying the RRC layer that the request for the RRC connection corresponds to the particular service type.
Abstract:
Technology described herein provides carrier-monitoring (CM) signaling approaches that can be used by networks and/or mobile devices. An evolved Node B (eNB) can send an IncMon-support message indicating whether a network supports the increased-number-of-frequencies-to-monitor (IncMon) feature. A UE can apply a default CM configuration if the UE does not receive an IncMon-support message from the eNB. The eNB can use dedicated signaling or broadcast signaling to inform a UE of a default CM configuration or one or more adopted CM configurations that are used in the network. The eNB can also send a list of carriers that are to be monitored to the UE. The UE can also send UE-capability information to the eNB, such as a default CM configuration, an adopted CM configuration, or configurable configurations in different radio access technologies (RATs) supported by the UE.
Abstract:
Technology for providing core network assistance information from a mobility management entity (MME) in an evolved packet core (EPC) is disclosed. An average radio resource control (RRC) connected state time for a UE is determined. An average RRC idle state time for the UE is also determined. An amount of time that the UE spends in cells of the EPC is identified to determine a number of handover procedures between cells in a selected time period. The core network assistance information communicated to a serving eNB of the UE to enable the serving eNB to reduce UE state transitions for the UE.
Abstract:
Devices and methods of enhanced coverage (EC) paging are generally described. An evolved Node-B (eNB) may transmit multiple EC paging messages to user equipment (UE) over at least one paging cycle. Each EC paging message may contain the same paging information. The UE may combine the individual EC paging messages to achieve a predetermined link budget and subsequently may decode the EC combined paging message to determine whether the combined paging message is directed to the UE. The EC paging messages may contain information for more than one UE and a legacy P-RNTI or a specific P-RNTI for EC mode UEs. The EC paging messages may be transmitted in legacy occasions over several paging cycles or non-legacy paging occasions over one or more paging cycles. The EC paging messages may be transmitted in continuous or non-continuous subframes in a particular paging cycle.
Abstract:
Technology for providing core network assistance information from a mobility management entity (MME) in an evolved packet core (EPC) is disclosed. An average radio resource control (RRC) connected state time for a UE is determined. An average RRC idle state time for the UE is also determined. An amount of time that the UE spends in cells of the EPC is identified to determine a number of handover procedures between cells in a selected time period. The core network assistance information communicated to a serving eNB of the UE to enable the serving eNB to reduce UE state transitions for the UE.