Abstract:
Embodiments of the invention are directed to a magnetic tunnel junction (MTJ) storage element that includes a reference layer, a tunnel barrier and a free layer on an opposite side of the tunnel barrier layer from the reference layer. The reference layer has a fixed magnetization direction. The free layer includes a first region, a second region and a third region. The third region is formed from a third material that is configured to magnetically couple the first region and the second region. The first region is formed from a first material having a first predetermined magnetic moment, and the second region is formed from a second material having a second predetermined magnetic moment. The first predetermined magnetic moment is lower that the second predetermined magnetic moment.
Abstract:
A double magnetic tunnel junction (DMTJ) device includes a fixed reference layer of a first magnetic material having a perpendicular magnetic anisotropy with a magnetic moment that is fixed. The device also includes a free layer of a second magnetic material having a perpendicular magnetic anisotropy with a magnetic moment that is changeable based on a current. A dynamic reference layer of a third magnetic material has an in-plane magnetic anisotropy and a changeable magnetic moment. The free layer is disposed between the fixed reference layer and the dynamic reference layer.
Abstract:
A method for manufacturing a semiconductor device includes forming a magnetic tunnel junction (MTJ) structure comprising a magnetic fixed layer, a non-magnetic barrier layer and a magnetic free layer, and forming a metal oxide cap layer on the MTJ structure, wherein forming the metal oxide cap layer comprises depositing a metal layer on the magnetic free layer, performing an oxidation of the deposited metal layer to form an oxidized metal layer, and depositing a metal oxide layer on the oxidized metal layer.
Abstract:
Techniques relate to forming a semiconductor device. A magnetic pinned layer is formed adjacent to a tunnel barrier layer. A magnetic free layer is formed adjacent to the tunnel barrier layer, such that the tunnel barrier layer is sandwiched between the magnetic pinned layer and the magnetic free layer. The magnetic free layer includes a first magnetic layer, a second magnetic layer disposed on top of the first magnetic layer, and a third magnetic layer disposed on top of the second magnetic layer. The second magnetic layer of the magnetic free layer includes an additional material, and the additional material is a selection of at least one of Be, Mg, Al, Ca, B, C, Si, V, Cr, Ti, and Mn.
Abstract:
A magnetic material includes a cobalt layer between opposing iron layers. The iron layers include iron and are body-centered cubic (BCC), the cobalt layer comprises cobalt and is BCC or amorphous, and the magnetic material has a perpendicular magnetic anisotropy (PMA).
Abstract:
A device includes a seed layer, a magnetic track layer disposed on the seed layer, an alloy layer disposed on the magnetic track layer, a tunnel barrier layer disposed on the alloy layer, a pinning layer disposed on the tunnel barrier layer, a synthetic antiferromagnetic layer spacer disposed on the pinning layer, a pinned layer disposed on the synthetic antiferromagnetic spacer layer and an antiferromagnetic layer disposed on the pinned layer, and another device includes a seed layer, an antiferromagnetic layer disposed on the seed layer, a pinned layer disposed on the antiferromagnetic layer, a synthetic antiferromagnetic layer spacer disposed on the pinned layer, a pinning layer disposed on the synthetic antiferromagnetic layer spacer, a tunnel barrier layer disposed on the pinning layer, an alloy layer disposed on the tunnel barrier layer and a magnetic track layer disposed on alloy layer.
Abstract:
Embodiments are directed to a magnetic tunnel junction (MTJ) memory cell that includes a reference layer formed from a perpendicular magnetic anisotropy (PMA) reference layer and an interfacial reference layer. The MTJ further includes a free layer and a tunnel barrier positioned between the interfacial reference layer and the free layer. The tunnel barrier is configured to enable electrons to tunnel through the tunnel barrier between the interfacial reference layer and the free layer. A first in-situ alignment is provided between a tunnel barrier lattice structure of the tunnel barrier and an interfacial reference layer lattice structure of the interfacial reference layer. A second in-situ alignment is provided between the tunnel barrier lattice structure of the tunnel barrier and a free layer lattice structure of the free layer. The PMA reference layer lattice structure is not aligned with the interfacial reference layer lattice structure.
Abstract:
Embodiments are directed to a magnetic tunnel junction (MTJ) memory cell that includes a reference layer formed from a perpendicular magnetic anisotropy (PMA) reference layer and an interfacial reference layer. The MTJ further includes a free layer and a tunnel barrier positioned between the interfacial reference layer and the free layer. The tunnel barrier is configured to enable electrons to tunnel through the tunnel barrier between the interfacial reference layer and the free layer. A first in-situ alignment is provided between a tunnel barrier lattice structure of the tunnel barrier and an interfacial reference layer lattice structure of the interfacial reference layer. A second in-situ alignment is provided between the tunnel barrier lattice structure of the tunnel barrier and a free layer lattice structure of the free layer. The PMA reference layer lattice structure is not aligned with the interfacial reference layer lattice structure.
Abstract:
Magnetic memory devices having an antiferromagnetic reference layer based on Co and Ir are provided. In one aspect, a magnetic memory device includes a reference magnetic layer having multiple Co-containing layers oriented in a stack, wherein adjacent Co-containing layers in the stack are separated by an Ir-containing layer such that the adjacent Co-containing layers in the stack are anti-parallel coupled by the Ir-containing layer therebetween; and a free magnetic layer separated from the reference magnetic layer by a barrier layer. A method of writing data to a magnetic random access memory device having at least one of the present magnetic memory cells is also provided.
Abstract:
A mechanism is provided for a structure with perpendicular magnetic anisotropy. A bottom oxide layer is disposed, and a magnetic layer is disposed adjacent to the bottom oxide layer. The magnetic layer includes iron and is magnetized perpendicularly to a plane of the magnetic layer. A top oxide layer is disposed adjacent to the magnetic layer.