Abstract:
Row/column decoder circuits for a semiconductor memory device. Switching elements are used to separate a main power line from the row decoder circuit to block power from the main power line to the row decoder circuit when a word line is not driven. Therefore, the amount of standby current consumption can be reduced. Also, switching elements are used to separate a main power line from the column decoder circuit to block power from the main power line to the column decoder circuit when a bit line is not selected. Therefore, the amount of standby current consumption can be reduced.
Abstract:
An LED package includes a lead frame, a housing part, and a lead heat dissipating part. The lead frame includes a first lead mounting an LED chip and a second lead spaced apart from the first lead. The housing part covers a portion of the lead frame and includes an opening part for exposing the LED chip, a first side corresponding to a support side contacting the first lead and the second lead, and a second side opposite to the first side. The lead heat dissipating part is extended from the first lead and exposed partially to the first side of the housing part. Herein, the first side of the housing part is thicker than the second side.
Abstract:
Provided is a self-powered solar tracker, which is a solar tracker for adjusting the altitude of and horizontally rotating a solar collector panel such that the solar collector panel on which a plurality of solar cells are provided can face the sun, wherein the self-powered solar tracker comprises: an altitude adjustment optical sensor unit which has one or more first optical sensors formed by being uniformly spaced on the upper side of convex support surfaces to face the sun and one or more second optical sensors formed by being uniformly spaced on the lower side of the convex support surfaces, and which senses the sunlight so as to adjust the altitude of the solar collector panel; a horizontal rotation optical sensor unit which has one or more third optical sensors formed by being uniformly spaced on the left side of the convex support surfaces to face the sun and one or more fourth optical sensors formed by being uniformly spaced on the right side of the convex support surfaces, and which senses sunlight so as to horizontally rotate the solar collector panel; a passive element circuit which has one or more first comparison circuits for comparing the difference in the quantity of output light between the first optical sensors and the second optical sensors and one or more second comparison circuits for comparing the difference in the quantity of output light between the third optical sensors and the fourth optical sensors, and which outputs a driving value for adjusting the altitude of and horizontally rotating the solar collector panel in the direction having a larger light value; an altitude adjustment driving unit for receiving a driving power source from the solar cells of the solar collector panel and for adjusting the altitude of the solar collector panel according to the driving value of the passive element circuit; and a horizontal rotation driving unit for performing the horizontal rotation.
Abstract:
A data equalizing circuit includes an equalizer configured to output data according to a control code; and a detection unit configured to divide the data into N number of calculation periods, count data transition frequencies for the N calculation periods, calculate dispersion values of the data transition frequencies for the N calculation periods, and output the control code corresponding to a largest dispersion value, in response to a counting interruption signal and a counting completion signal, wherein n is equal to or greater than 2, N is greater than n, and the data is divided to n number of unit intervals (UI), andwherein a phase shift of each of the calculation periods with respect to its corresponding UI is different from a phase shift of any of the other calculation periods with respect to its corresponding UI.
Abstract:
A circuit board has an insulative layer including a first surface and a second surface opposite to the first surface. A plurality of electrically conductive patterns is formed on the first surface of the insulative layer. Conductive lands are formed in a die mounting region of the first surface of the insulative layer and electrically connected to one of the plurality of conductive patterns on the first surface. An extending pattern extends from the conductive lands to outside of the mounting region. A protective layer covers the first surface of the insulative layer and the electrically conductive patterns. A trench is formed in the protective layer to expose the conductive lands and the extending patterns.
Abstract:
The present invention relates to a drowsiness detection method. A heartbeat signal and a breathing signal are detected by exploiting together a scheme and an optical system scheme. The detected signals are applied to respective amplification units, noise signals are eliminated from the detected signals, and noise-free signals are amplified. The amplified signals are applied to a central processing unit, signal processing is processed on the signals, and processed signals are combined. The combined signal is counted, and a warning sound, voice message or vibration is output in a case where a value, obtained by subtracting a counted output value monitored one minute before a current time, from a counted output value monitored two minutes before the current time, falls within a detection range and where, with a passage of time, the value falling within the detection range is successively detected from two to ten times.
Abstract:
A semiconductor device stabilizes an operation of an input buffer. A semiconductor device includes an input potential detection unit outputting a detection signal in response to a level of an input signal. An input buffer buffers the input signal by performing a differential amplifying operation through a first current sink unit. A second current sink unit, sharing an output with the input buffer, differentially amplifies the input signal of the input buffer in response to a level of the detection signal.
Abstract:
Provided is a parallel program execution method in which in order to reflect structural characteristics of a multithreaded processor-based parallel system, performance of the parallel loop is predicted while compiling or executing using a performance prediction model and then the parallel program is executed using an adaptive execution method.The method includes the steps of: generating as many threads as the number of physical processors of the parallel system in order to execute at least one parallel loop contained in the parallel program; by the generated threads, executing at least one single loop of each parallel loop; measuring an execution time, the number of executed instructions, and the number of cache misses for each parallel loop; determining an execution mode of each parallel loop by determining the number of threads used to execute each parallel loop based on the measured values; and allocating the threads to each physical processor according to the result of the determination to execute each parallel loop.The method significantly improves the performance of the parallel program driven in the multithreaded processor-based parallel system.
Abstract:
A charge trap insulator memory device comprises a plurality of memory cells connected serially, a first switching device, and a second switching device. In the plurality of memory cells, data applied through a bit line depending on potentials applied to a top word line and a bottom word line are stored in a charge trap insulator or the data stored in the charge trap insulator are outputted to the bit line. The first switching element selectively connects the plurality of memory cells to the bit line in response to a first selecting signal. The second switching element selectively connects the plurality of memory cells to a sensing line in response to a second selecting signal.