Abstract:
Provided is a manufacturing method of a photo detector. The method includes: forming a first single crystal semiconductor layer and an optical waveguide protruding from the first single crystal semiconductor layer; forming an insulation layer on the first single crystal semiconductor layer to cover the optical waveguide; forming an opening by etching the insulation layer to expose the top surface of the optical waveguide; forming a second single crystal semiconductor layer from the top surface of the exposed optical waveguide, in the opening; and selectively forming a poly semiconductor layer from the top surface of the second single crystal semiconductor layer, the poly semiconductor layer being doped with dopants.
Abstract:
Provided is a monolithic integrated composite device including: a silicon substrate which is partitioned into a silicon integrated circuit forming region and a silicon optical device forming region; a buried oxide layer which is formed locally in the silicon substrate of the silicon optical device forming region and isolates unit devices of the silicon optical device forming region; an overlay layer formed locally on the buried oxide layer; a silicon optical device formed in the silicon optical device forming region using the silicon overlay layer; a silicon integrated circuit formed in the silicon integrated circuit forming region of the silicon substrate; and wiring connecting the silicon integrated circuit and the silicon optical device or connecting the silicon optical devices or connecting the silicon integrated circuits.
Abstract:
Provided is a waveguide photodetector that may improve an operation speed and increase or maximize productivity. The waveguide photodetector includes a waveguide layer extending in a first direction, an absorption layer disposed on the waveguide layer, a first electrode disposed on the absorption layer, a second electrode disposed on the waveguide layer, the second electrode being spaced from the first electrode and the absorption layer in a second direction crossing the first direction, and at least one bridge electrically connecting the absorption layer to the second electrode.
Abstract:
Provided are an optical device and a method of fabricating the same. The optical device includes: a substrate; and a ring resonator on the substrate. The ring resonator includes: a cladding layer including a lower cladding layer and an upper cladding layer on the substrate; a core including a plurality of rings between the lower cladding layer and the upper cladding layer; and an embeded layer interposed between the core and the cladding layer and having a refractive index less than that of the core and more than that of the cladding layer.
Abstract:
Provided is an optical device, which includes a substrate, a first cladding disposed on the substrate, a first optical waveguide extended in a first direction on the first cladding, and having a first refractive index, a side grating formed in at least one side of the first optical waveguide, a second optical waveguide filling a space of the side grating, extended in a second direction across the first direction on the first cladding, and having a second refractive index, and a second cladding disposed on the second optical waveguide, and having a third refractive index, wherein the first refractive index is greater than the second refractive index, and the second refractive index is greater than the third refractive index.
Abstract:
Provided is a 2-terminal semiconductor device that uses an abrupt MIT semiconductor material layer. The 2-terminal semiconductor device includes a first electrode layer, an abrupt MIT semiconductor organic or inorganic material layer having an energy gap less than 2eV and holes in a hole level disposed on the first electrode layer, and a second electrode layer disposed on the abrupt MIT semiconductor organic or inorganic material layer. An abrupt MIT is generated in the abrupt MIT semiconductor material layer by a field applied between the first electrode layer and the second electrode layer.
Abstract:
An optical filter module for wavelength multiplexing and demultiplexing and a method of manufacturing the same are provided. The optical filter module for wavelength multiplexing and demultiplexing includes: at least one or more input waveguides; an input-stage star coupler in the form of a slab waveguide connected to the input waveguides; array waveguide which is connected to the input-stage star coupler and in which a plurality of individual waveguides, each of which has an optical path having a predetermined length different to those of the other waveguides and has a heterogeneous waveguide interval formed of a material having a different refraction index from that of a core of the waveguides, are sequentially arranged; an output-stage star coupler in the form of a slab waveguide connected to the array waveguides; and at least one or more output waveguides connected to the output-stage star coupler. According to the optical filter module and the method of manufacturing the same, heterogeneous waveguide intervals having core materials different from those of conventional waveguides are introduced in predetermined areas of array waveguides, thereby reducing polarized light and temperature dependency and at the same time effectively removing optical coupling loss, which can occur at both ends of a heterogeneous waveguide interval, without an additional process of forming waveguides.
Abstract:
A current-jump-control circuit including an abrupt metal-insulator phase transition device is proposed, and includes a source, the abrupt metal-insulator phase transition device and a resistive element. The abrupt metal-insulator phase transition device includes first and second electrodes connected to the source, and shows an abrupt metal-insulator phase transition characteristic of a current jump when an electric field is applied between the first electrode and the second electrode. The resistive element is connected between the source and the abrupt metal-insulator phase transition device to control a jump current flowing through the abrupt metal-insulator phase transition device. According to the above current control circuit, the abrupt metal-insulator phase transition device can be prevented from being failed due to a large amount of current and thus the current-jump-control circuit can be applied in various application fields.
Abstract:
Provided are light detection devices and methods of manufacturing the same. The light detection device includes a first conductive pattern on a surface of a substrate, an insulating pattern on the substrate and having an opening exposing at least a portion of the first conductive pattern, a light absorbing layer filling the opening of the insulating pattern and having a top surface disposed at a level substantially higher than a top surface of the insulating pattern, a second conductive pattern on the light absorbing layer, and connecting terminals electrically connected to the first and second conductive patterns, respectively.
Abstract:
Provided is a waveguide photodetector that may improve an operation speed and increase or maximize productivity. The waveguide photodetector includes a waveguide layer extending in a first direction, an absorption layer disposed on the waveguide layer, a first electrode disposed on the absorption layer, a second electrode disposed on the waveguide layer, the second electrode being spaced from the first electrode and the absorption layer in a second direction crossing the first direction, and at least one bridge electrically connecting the absorption layer to the second electrode.