Abstract:
An apparatus for generating an oscillating output signal includes an inductive-capacitive (LC) circuit and a current tuning circuit. The LC circuit includes a primary inductor and a varactor coupled to the primary inductor. A capacitance of the varactor is responsive to a voltage at a control input of the varactor. The current tuning circuit includes a secondary inductor and a current driving circuit coupled to the secondary inductor. The current driving circuit is responsive to a current at a control input of the current driving circuit. An effective inductance of the primary inductor is adjustable via magnetic coupling to the secondary inductor, and a frequency of the oscillating output signal is responsive to the effective inductance of the primary inductor and to the capacitance of the varactor.
Abstract:
Locking multiple VCOs to generate a plurality of LO frequencies, including: receiving a plurality of divided VCO feedback signals from a plurality of VCOs; receiving a reference signal multiplied by a predetermined number of the plurality of VCOs; generating and processing the predetermined number of phase differences between the multiplied reference signal and the plurality of divided VCO feedback signals in a single PLL circuit including a digital loop filter to receive and process the phase differences and generate (produce) a filter output, wherein the digital loop filter includes a plurality of delay cells equal to the predetermined number; and generating and outputting (delayed) control voltages for the plurality of VCOs based on the filter output.
Abstract:
An apparatus includes a first filter tuned to a sub-band of a frequency band and a second filter tuned to the frequency band. The first filter is configured to be coupled to a receiver based on a first mode. The second filter is configured to be coupled to the receiver based on a second mode.
Abstract:
Reconfiguring a transceiver design using a plurality of frequency synthesizers and a plurality of carrier aggregation (CA) receiver (Rx) and transmitter (Tx) chains, the method including: connecting a first frequency synthesizer to a first CA Tx chain; connecting the plurality of frequency synthesizers to the plurality of CA Rx chains, wherein a second frequency synthesizer of the plurality of frequency synthesizers is connected as a shared synthesizer to a first CA Rx chain and a second CA Tx chain.
Abstract:
Methods and apparatus including: setting up a plurality of configurations for a plurality of local oscillator (LO) paths of a carrier aggregation (CA) transceiver operating with a plurality of bands; calculating and comparing frequencies for each LO path of the plurality of LO paths and at least one divider ratio of LO dividers for each band of the plurality of bands to identify frequency conflicts; and reconfiguring the LO dividers for the plurality of LO paths and the plurality of bands when the frequency conflicts are identified.
Abstract:
A device includes a reconfigurable receiver front end having variable gain and variable bandwidth configured to tune to a plurality of communication channels in a communication band, the reconfigurable receiver front end responsive to a signal power level.
Abstract:
Receiver circuits that can be reconfigured to generate test signals in a wireless device are disclosed. In an exemplary design, an apparatus includes a mixer and an amplifier. The mixer downconverts an input radio frequency (RF) signal based on a local oscillator (LO) signal in a first mode. The amplifier, which is formed by at least a portion of the mixer, amplifies the LO signal and provides an amplified LO signal in a second mode. In another exemplary design, an apparatus includes an amplifier and an attenuator. The amplifier receives and amplifies an input RF signal in a first mode. The attenuator, which is formed by at least a portion of the amplifier, receives and passes an LO signal in a second mode.
Abstract:
A method for reducing power consumption on a wireless communication device is described. The wireless communication device includes a first stage active filter and a second stage active filter. A condition measurement is obtained that includes a signal measurement condition. If it is determined that the condition measurement is above a threshold, the second stage active filter is bypassed.
Abstract:
Receiver circuits that can be reconfigured to generate test signals in a wireless device are disclosed. In an exemplary design, an apparatus includes a mixer and an amplifier. The mixer downconverts an input radio frequency (RF) signal based on a local oscillator (LO) signal in a first mode. The amplifier, which is formed by at least a portion of the mixer, amplifies the LO signal and provides an amplified LO signal in a second mode. In another exemplary design, an apparatus includes an amplifier and an attenuator. The amplifier receives and amplifies an input RF signal in a first mode. The attenuator, which is formed by at least a portion of the amplifier, receives and passes an LO signal in a second mode.