Abstract:
The present disclosure relates to a non-volatile memory cell on a semiconductor substrate, comprising a first transistor comprising a control gate, a floating gate and a drain region, a second transistor comprising a control gate, a floating gate and a drain region, in which the floating gates of the first and second transistors are electrically coupled, and the second transistor comprises a conducting region electrically coupled to its drain region and extending opposite its floating gate through a tunnel dielectric layer.
Abstract:
The present disclosure relates to a memory including a memory array with at least two rows of memory cells, a first driver coupled to a control line of the first row of memory cells, and a second driver coupled to a control line of the second row of memory cells. The first driver is made in a first well, the second driver is made in a second well electrically insulated from the first well, and the two rows of memory cells are produced in a memory array well electrically insulated from the first and second wells.
Abstract:
The disclosure comprises: linking a first terminal of the capacitance to the mid-point of a first voltage divider bridge, applying a first voltage to a second terminal of the capacitance, maintaining a voltage of a mid-point of the first divider bridge near a reference voltage, and discharging a mid-point of a second divider bridge with a constant current. When a voltage of the mid-point of the second bridge reaches a first voltage threshold, applying a second voltage to the second terminal of the capacitance, and measuring the time for the voltage to reach a second threshold.
Abstract:
A sense amplifier includes: two detection inputs, a latch circuit including two sections coupled to each other and each supplying a data signal. Each section is respectively powered by a P-channel control transistor, having a gate terminal receiving a control signal linked to a respective detection input of the two detection inputs. The sense amplifier includes a control circuit configured to reduce each of the control signals to a sufficiently low voltage to put the corresponding control transistor to the on state, when the control signal reaches a reference voltage. The latch circuit is activated to supply one of the data signals when a corresponding one of the control transistors is in the on state.
Abstract:
The disclosure relates to an integrated circuit comprising at least two memory cells formed in a semiconductor substrate, and a buried gate common to the selection transistors of the memory cells. The buried gate has a first section of a first depth extending in front of vertical channel regions of the selection transistors, and at least a second section of a second depth greater than the first depth penetrating into a buried source line. The lower side of the buried gate is bordered by a doped region forming a source region of the selection transistors and reaching the buried source line at the level where the second section of the buried gate penetrates into the buried source line, whereby the source region is coupled to the buried source line.
Abstract:
The disclosure relates to an integrated circuit comprising a nonvolatile memory on a semiconductor substrate. The integrated circuit comprises a doped isolation layer implanted in the depth of the substrate, isolated conductive trenches reaching the isolation layer and forming gates of selection transistors of memory cells, isolation trenches perpendicular to the conductive trenches and reaching the isolation layer, and conductive lines parallel to the conductive trenches, extending on the substrate and forming control gates of charge accumulation transistors of memory cells. The isolation trenches and the isolated conductive trenches delimit a plurality of mini wells in the substrate, the mini wells electrically isolated from each other, each having a floating electrical potential and comprising two memory cells.
Abstract:
The disclosure relates to a method of reading and writing memory cells, each including a charge accumulation transistor in series with selection transistor, including applying a selection voltage to a gate of the selection transistor of the memory cell; applying a read voltage to a control gate of the charge accumulation transistor of the memory cell; applying the selection voltage to a gate of the selection transistor of a second memory cell coupled to the same bitline; and applying an inhibition voltage to a control gate of the charge accumulation transistor of the second memory cell, to maintain the transistor in a blocked state.
Abstract:
The disclosure relates to a method for characterizing or measuring a capacitance, comprising: linking the capacitance to a first mid-point of a first capacitive divider bridge, applying to the divider bridge a bias voltage, maintaining the voltage of the first mid-point near a reference voltage, discharging a second mid-point of a second divider bridge in parallel with the first by means of a constant current, and measuring the time for a voltage of the second mid-point to become equal to the voltage of the first mid-point. The disclosure may be applied in particular to the control of a touch screen display.
Abstract:
In an embodiment a noon-volatile memory device includes a memory plane including at least one memory area including an array of memory cells having two rows and N columns, wherein each memory cell comprises a state transistor having a control gate and a floating gate selectable by a vertical selection transistor buried in a substrate and including a buried selection gate, and wherein each column of memory cells includes a pair of twin memory cells, two selection transistors of the pair of twin memory cells having a common selection gate and a processor configured to store in the memory area information including a succession of N bits so that, with exception of the last bit of the succession, a current bit of the succession is stored in two memory cells located on the same row and on two adjacent columns and a current bit and the following bit are respectively stored in two twin cells.
Abstract:
In accordance with an embodiment, a physically unclonable function device includes a set of floating gate transistor pairs, floating gate transistors of the set of floating gate transistor pairs having a randomly distributed effective threshold voltage belonging to a common random distribution; a differential read circuit configured to measure a threshold difference between the effective threshold voltages of floating gate transistors of floating gate transistor pairs of the set of floating gate transistor pairs, and to identify a floating gate transistor pair in which the measured threshold difference is smaller than a margin value as being an unreliable floating gate transistor pair; and a write circuit configured to shift the effective threshold voltage of a floating gate transistor of the unreliable floating gate transistor pair to be inside the common random distribution.