Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma for various plasma processes and treatments. Such treatments include cleaning and sterilizing parts. In some embodiments, a plasma is ignited by subjecting a gas in a multi-mode processing cavity to electromagnetic radiation having a frequency between about 1 MHz and about 333 GHz in the presence of a plasma catalyst. A part can be cleaned by, for example, inserting hydrogen into the plasma and exposing the part to the hydrogen-enriched plasma. A part can be sterilized by heating the part with the plasma.
Abstract:
A liquid crystal display device comprises two substrates facing and spaced from each other, at least one of the substrates being transparent; an electro-optical material filling a first portion of the space between the substrates, the electro-optical material comprising molecules whose spatial orientation can be altered by application of an electric field across the two substrates; and a polymeric material filling a second portion of the space between the substrates, the polymeric material having been polymerized in situ between the plates, wherein the polymeric material forms a multiplicity of microscopic polymer columns extending between the two substrates, and the columns provide both a structural bond between the two substrates for maintaining the spacing between the substrates and alignment of the molecules of the electro-optical material, with the alignment resulting from the close spacing of the microscopic columns. A method to fabricate electro-optical displays having two facing substrates, electro-optical material in the space between the substrates, and in-situ polymerized microscopic columns extending between the substrates is also disclosed.
Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma (615) for coating objects (250). In one embodiment, a method of coating a surface of an object (250) includes forming a plasma (615) in a cavity (230) by subjecting a gas to electromagnetic radiation in the presence of a plasma catalyst (240) and adding at least one coating material (510) to the plasma (615) by energizing the material (510) with, for example, a laser (500). The material (510) is allowed to deposit on the surface of the object (250) to form a coating. Various types of plasma (240) catalysts are also provided.
Abstract:
Methods and apparatus are provided for igniting, modulating, and sustaining a plasma for various doping processes. In one embodiment, a substrate (250) can be doped by forming a plasma (610) in a cavity (285) by subjecting a gas to an amount of electromagnetic radiation in the presence of a plasma catalyst (240) and adding at least one dopant material to the plasma. The material is then allowed to penetrate into the substrate. Various active and passive catalysts are provided.
Abstract:
A system and method of carburizing a surface region of an object includes subjecting a gas to electromagnetic radiation, generated from a radiation source (52), in the presence of a plasma catalyst (70) to initiate a plasma containing carbon. The method also includes exposing the surface region of the object to the plasma for a period of time sufficient to transfer at least some of the carbon from the plasma to the object through the first surface region.
Abstract:
Methods and apparatus for plasma-assisted joining of one or more parts together are provided. The joining process may include, for example, placing at least first and second joining areas in proximity to one another in a cavity, forming a plasma in the cavity by subjecting a gas to electromagnetic radiation in the presence of a plasma catalyst, and sustaining the plasma at least until the first and second joining areas are joined. Plasma catalysts, and methods and apparatus for igniting, modulating, and sustaining a joining plasma, are provided. Additional cavity shapes, and methods and apparatus for selective plasma-joining, are also provided.
Abstract:
A method and apparatus are provided for treating the surface of a metal body through phase transformation, ion implantation, and/or diffusion and to form new phases of metallic materials. The method and apparatus have been shown to be particularly useful to improve the hardness and corrosion resistance of ferrous and non-ferrous metals. Generally, the method comprises irradiating a portion of the metal body (18) with a laser (12), and directing a stream of gas (22) onto the same portion of the metal body simultaneously with and preferably for a duration after the laser is turned off. Preferably, the laser (12) is a carbon dioxide laser operated in a pulsed mode to control heating of the metal (18). The gas (22) is preferably carbon dioxide to quickly cool the metal when the laser is off, and to provide carbon atoms for deposition onto the body. The entire process may be carried out in an environment at atmospheric pressure, obviating the need for a vacuum chamber or pressure controlled furnace or similar apparatus. After treatment, the hardness and corrosion resistance of at least a ferrous body are dramatically increased. Advantageously, both sides of a thin metal body, such as a metal tube, may be simultaneously treated. Further, a new, highly oxygenated, hard and extremely corrosion resistant metal phase may be created.
Abstract:
A light modulating cell comprises a pair of substrates, alignment layers disposed on at least one of the substrates and a solution of polymerizable prepolymer and low molecular weight organic material disposed between the pair of substrates. The solution is phase separated and forms a layer of polymeric material and a layer of organic material between the two substrates. An external force may then be applied across the substrates to alter the optical appearance of the layer of organic material from one state to another. A photo-sensitive layer may also be provided in the cell.
Abstract:
A non-contacting method of forming an alignment layer on a substrate used in liquid crystal displays which includes the steps of cleaning a substrate surface, disposing a solution having a prepolymer, such as polyamic acid or a resin and a curing agent, and solvent on the substrate surface, evaporating the solvent, and positioning an ultraviolet light source proximally near the substrate surface. A linear polarizer is positioned between the ultraviolet light source and the substrate surface. Ultraviolet light is projected through the polarizer onto the substrate surface to simultaneously molecularly align the polymer segments as the prepolymer is polymerized to form an alignment layer on the substrate. Adjusting the direction of polarization and the angle of incidence of the ultraviolet light source allows for generation of an alignment layer with a corresponding pre-tilt angle.