摘要:
A dry vacuum pump that includes a casting having an inner cylinder communicating with an inlet and an outlet of the pump, shafts supported by the casting, spiral toothed parts formed on the shaft a plurality of screw rotors each of which includes the shaft and the spiral toothed parts received in the inner cylinder intermeshing with each other. Timing gears each of which are attached to the respective shafts of the screw rotors that intermesh with each other. Locking mechanisms for fixing the timing gears to the shaft. Both of the shaft and the toothed part are made of spheroidal graphite cast iron containing 20 to 30 wt % of nickel are cast integrally.
摘要:
A process for the production of a silicon nitride sintered body which comprises heat-treating a stock of silicon nitride sintered body within a temperature range of from the temperature at which the internal friction of the stock exhibits a peculiar peak maximum minus 150.degree. C. to that plus 150.degree. C. A representative used in the process is one which is produced by mixing powdered silicon nitride with powdery sintering aids so as to give a powder mixture comprising 5 to 15% by weight (in terms of oxide) of at least one element selected from the group consisting of rare earth elements and aluminum, 0.5 to 5% by weight (in terms of oxide) of at least one element selected from the group consisting of Mg, Ti and Ca and the balance of Si.sub.3 N.sub.4, molding the powder mixture, and sintering the resulting compact in a nitrogen-containing atmosphere at 1500.degree. to 1700.degree. C.
摘要翻译:一种氮化硅烧结体的制造方法,其特征在于,在从所述坯料的内部摩擦显示出特有的峰值最大值-150℃到+ 150℃的温度的温度范围内,对氮化硅烧结体的原料进行热处理, 该加工过程中使用的代表是通过将粉状氮化硅与粉末状烧结助剂混合制成的代表物,从而得到包含5至15重量%(以氧化物计)至少一种 选自由稀土元素和铝组成的组的元素为0.5〜5重量%(以氧化物计),选自Mg,Ti和Ca中的至少一种元素,余量为Si 3 N 4,将粉末成型 混合,在1500〜1700℃的含氮气氛中烧结。
摘要:
Silicon nitride sintered bodies consisting of prismatic crystal grains of Si.sub.3 N.sub.4 and/or sialon, equi-axed crystal grains of Si.sub.3 N.sub.4 and/or sialon, a grain boundary phase existing among the prismatic and equi-axed crystal grains and dispersed particles in the grain boundary phase, in which the prismatic crystal grains have an average grain size of 0.3 .mu.m or less in minor axis and an average grain size of 5 .mu.m or less in major axis, the equi-axed crystal grains have an average grain size of 0.5 .mu.m or less and the dispersed particles have an average size of 0.1 .mu.m or less, the volume of the dispersed particles being 0.05% by volume or more based on the total volume of the rest of the sintered body. The silicon nitride sintered bodies have a strength sufficient for use as structural materials of machine parts or members, with a minimized scattering of the strength as well as high reliability, superior productivity and advantageous production cost.
摘要翻译:由Si 3 N 4和/或赛隆的棱柱状晶粒构成的氮化硅烧结体,Si 3 N 4等离子晶粒和/或赛隆,棱晶相和等轴晶粒中存在的晶界相和晶界相中的分散粒子 其中棱柱晶粒的短轴平均粒径为0.3μm以下,长轴的平均粒径为5μm以下,等轴晶粒的平均粒径为0.5μm m以下,分散粒子的平均粒径为0.1μm以下,相对于烧结体的其余部分的总体积,分散粒子的体积为0.05体积%以上。 氮化硅烧结体具有足以用作机械部件或部件的结构材料的强度,其强度的极小散射以及高可靠性,优异的生产率和有利的生产成本。
摘要:
The present method of manufacturing a GaN-based film includes the steps of preparing a composite substrate including a support substrate dissoluble in hydrofluoric acid and a single crystal film arranged on a side of a main surface of the support substrate, a coefficient of thermal expansion in the main surface of the support substrate being more than 0.8 time and less than 1.2 times as high as a coefficient of thermal expansion of GaN crystal, forming a GaN-based film on a main surface of the single crystal film arranged on the side of the main surface of the support substrate, and removing the support substrate by dissolving the support substrate in hydrofluoric acid. Thus, the method of manufacturing a GaN-based film capable of efficiently obtaining a GaN-based film having a large main surface area, less warpage, and good crystallinity, as well as a composite substrate used therefor are provided.
摘要:
The present method of manufacturing a GaN-based film includes the steps of preparing a composite substrate, the composite substrate including a support substrate in which a coefficient of thermal expansion in a main surface is more than 0.8 time and less than 1.2 times as high as a coefficient of thermal expansion of GaN crystal in a direction of a axis and a single crystal film arranged on a side of the main surface of the support substrate, the single crystal film having threefold symmetry with respect to an axis perpendicular to a main surface of the single crystal film, and forming a GaN-based film on the main surface of the single crystal film in the composite substrate. Thus, a method of manufacturing a GaN-based film capable of manufacturing a GaN-based film having a large main surface area and less warpage is provided.
摘要:
To provide a light-transmitting window material made of a spinel sintered body, wherein the largest diameter of pores contained in the light-transmitting window material is not more than 100 μm, and the number of pores having a largest diameter of not less than 10 μm is not more than 2.0 per 1 cm3 of the light-transmitting window material, and wherein light scattering factors are further reduced, and a method for producing a spinel light-transmitting window material including the steps of preparing a spinel molded body; a primary sintering step of sintering the spinel molded body at normal pressure or less or in a vacuum at a temperature in the range of 1500 to 1900° C.; and a secondary sintering step of sintering the spinel molded body under pressure at a temperature in the range of 1500 to 2000° C., wherein the relative density of the spinel molded body after the primary sintering step is 95 to 96% and the relative density of the spinel molded body after the secondary sintering step is 99.8% or more.
摘要:
The present method of manufacturing a GaN-based film includes the steps of preparing a composite substrate, the composite substrate including a support substrate in which a coefficient of thermal expansion in a main surface is more than 0.8 time and less than 1.2 times as high as a coefficient of thermal expansion of GaN crystal in a direction of a axis and a single crystal film arranged on a side of the main surface of the support substrate, the single crystal film having threefold symmetry with respect to an axis perpendicular to a main surface of the single crystal film, and forming a GaN-based film on the main surface of the single crystal film in the composite substrate. Thus, a method of manufacturing a GaN-based film capable of manufacturing a GaN-based film having a large main surface area and less warpage is provided.
摘要:
To provide a light-transmitting window material made of a spinel sintered body, wherein the largest diameter of pores contained in the light-transmitting window material is not more than 100 μm, and the number of pores having a largest diameter of not less than 10 μm is not more than 2.0 per 1 cm3 of the light-transmitting window material, and wherein light scattering factors are further reduced, and a method for producing a spinel light-transmitting window material including the steps of preparing a spinel molded body; a primary sintering step of sintering the spinel molded body at normal pressure or less or in a vacuum at a temperature in the range of 1500 to 1900° C.; and a secondary sintering step of sintering the spinel molded body under pressure at a temperature in the range of 1500 to 2000° C., wherein the relative density of the spinel molded body after the primary sintering step is 95 to 96% and the relative density of the spinel molded body after the secondary sintering step is 99.8% or more.
摘要:
The present invention is a minimal-defect light-emitting device substrate that enables emitted light to issue from a device's substrate side, and is a light-emitting device 100 substrate furnished with a transparent substrate 10 that is transparent to light of wavelengths between 400 nm and 600 nm, inclusive, and a nitride-based compound semiconductor thin film 1c formed onto one of the major surfaces of the transparent substrate 10 by a join. Letting the thermal expansion coefficient of the transparent substrate along a direction perpendicular to the major surface of the transparent substrate be α1, and the thermal expansion coefficient of the nitride-based compound semiconductor thin film be α2, then (α1−α2)/α2 is between −0.5 and 1.0, inclusive, and at up to 1200° C. the transparent substrate does not react with the nitride-based compound semiconductor thin film 1c. The absolute index of refraction of the transparent substrate 10 preferably is between 60% and 140%, inclusive, of the absolute index of refraction of the nitride-based compound semiconductor thin film.
摘要:
There is provided a method of producing a polycrystalline transparent ceramic substrate used in a transparent substrate or the like for a liquid crystal projector. The method of producing a polycrystalline transparent ceramic substrate is characterized in comprising a step for sintering a ceramic body molded into a predetermined shape and producing a polycrystalline transparent ceramic sintered body, a step for cutting the polycrystalline transparent ceramic sintered body and producing a plurality of polycrystalline transparent ceramic cut bodies, a step for polishing the cut surfaces of the polycrystalline transparent ceramic cut bodies and producing polycrystalline transparent ceramic polished bodies, and a step for applying an antireflection coating to the polycrystalline transparent ceramic polished bodies and producing coated polycrystalline transparent ceramic bodies.