Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of : providing a substrate; forming a first gate structure on the substrate; forming a first contact plug adjacent to the first gate structure; and performing a replacement metal gate (RMG) process to transform the first gate structure into metal gate.
Abstract:
The present invention provides a semiconductor structure, including a substrate, a plurality of fin structures, a plurality of gate structures, a dielectric layer and a plurality of contact plugs. The substrate has a memory region. The fin structures are disposed on the substrate in the memory region, each of which stretches along a first direction. The gate structures are disposed on the fin structures, each of which stretches along a second direction. The dielectric layer is disposed on the gate structures and the fin structures. The contact plugs are disposed in the dielectric layer and electrically connected to a source/drain region in the fin structure. From a top view, the contact plug has a trapezoid shape or a pentagon shape. The present invention further provides a method for forming the same.
Abstract:
A manufacturing method for forming a semiconductor device includes: first, a substrate is provided, a fin structure is formed on the substrate, and a plurality of gate structures are formed on the fin structure, next, a hard mask layer and a first photoresist layer are formed on the fin structure, an first etching process is then performed on the first photoresist layer, afterwards, a plurality of patterned photoresist layers are formed on the remaining first photoresist layer and the remaining hard mask layer, where each patterned photoresist layer is disposed right above each gate structure, and the width of each patterned photoresist is larger than the width of each gate structure, and the patterned photoresist layer is used as a hard mask to perform an second etching process to form a plurality of second trenches.
Abstract:
The present invention provides a semiconductor structure, including a substrate, a plurality of fin structures, a plurality of gate structures, a dielectric layer and a plurality of contact plugs. The substrate has a memory region. The fin structures are disposed on the substrate in the memory region, each of which stretches along a first direction. The gate structures are disposed on the fin structures, each of which stretches along a second direction. The dielectric layer is disposed on the gate structures and the fin structures. The contact plugs are disposed in the dielectric layer and electrically connected to a source/drain region in the fin structure. From a top view, the contact plug has a trapezoid shape or a pentagon shape. The present invention further provides a method for forming the same.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate; a first metal gate on the substrate; a first hard mask on the first metal gate; an interlayer dielectric (ILD) layer on top of and around the first metal gate; and a patterned metal layer embedded in the ILD layer, in which the top surface of the patterned metal layer is lower than the top surface of the first hard mask.
Abstract:
A method for fabricating a semiconductor device is provided according to one embodiment of the present invention and includes forming an interlayer dielectric on a substrate; forming a trench surrounded by the interlayer dielectric; depositing a dielectric layer and a work function layer on a surface of the trench sequentially and conformally; filling up the trench with a conductive layer; removing an upper portion of the conductive layer inside the trench; forming a protection film on a top surface of the interlayer dielectric and a top surface of the conductive layer through a directional deposition process; removing the dielectric layer exposed from the protection film; and forming a hard mask to cover the protection film.
Abstract:
A method for fabricating a semiconductor device is provided according to one embodiment of the present invention and includes forming an interlayer dielectric on a substrate; forming a trench surrounded by the interlayer dielectric; depositing a dielectric layer and a work function layer on a surface of the trench sequentially and conformally; filling up the trench with a conductive layer; removing an upper portion of the conductive layer inside the trench; forming a protection film on a top surface of the interlayer dielectric and a top surface of the conductive layer through a directional deposition process; removing the dielectric layer exposed from the protection film; and forming a hard mask to cover the protection film.
Abstract:
A method for fabricating a patterned structure of a semiconductor device includes: forming first mandrels and second mandrels on a substrate, wherein a first spacing is defined between the two adjacent first mandrels and a second spacing is defined between the two adjacent second mandrels, the first spacing being wider than the second spacing; forming a cover layer to cover the first mandrels while exposing the second mandrels; etching the cover layer and the second mandrels; removing the cover layer; concurrently forming first spacers on the sides of the first mandrels and a second spacers on the sides of the second mandrels after removing the cover layer; and transferring a layout of the first and second spacers to the substrate so as to form fin-shaped structures.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate having an interlayer dielectric (ILD) layer thereon, wherein at least one metal gate is formed in the ILD layer and at least one source/drain region is adjacent to two sides of the metal gate; forming a first dielectric layer on the ILD layer; forming a second dielectric layer on the first dielectric layer; performing a first etching process to partially remove the second dielectric layer; utilizing a first cleaning agent for performing a first wet clean process; performing a second etching process to partially remove the first dielectric layer; and utilizing a second cleaning agent for performing a second wet clean process, wherein the first cleaning agent is different from the second cleaning agent.
Abstract:
A shallow trench isolation (STI) and method of forming the same is provided. The STI structure comprises an upper insulating portion and a lower insulating portion, wherein the lower insulating portion includes a first insulator and an insulating layer surrounding the first insulator, the upper insulating portion includes a second insulator and a buffer layer surrounding the second insulator. A part of the buffer layer interfaces between the first insulator and the second insulator, and the outer sidewall of the buffer layer and the sidewall of the first insulator are leveled.