Abstract:
A method for fabricating minimal fin length includes the steps of first forming a fin-shaped structure extending along a first direction on a substrate, forming a first single-diffusion break (SDB) trench and a second SDB trench extending along a second direction to divide the fin-shaped structure into a first portion, a second portion, and a third portion, and then performing a fin-cut process to remove the first portion and the third portion.
Abstract:
The present invention provides a pattern verifying method. First, a target pattern is decomposed into a first pattern and a second pattern. A first OPC process is performed for the first pattern to form a first revised pattern, and a second OPC process is performed for the second pattern to form a second revised pattern. An inspection process is performed, wherein the inspection process comprises an after mask inspection (AMI) process, which comprises considering the target pattern, the first pattern and the second pattern.
Abstract:
A method for decomposing a layout of an integrated circuit is provided. First, a layout of the integrated circuit is imported, wherein the layout comprises a plurality of sub patterns in a cell region, and a first direction and a second direction are defined thereon. Next, one sub pattern positioned at a corner of the cell region is assigned to an anchor pattern. Then, the sub patterns in the row same as the anchor pattern along the second direction is assigned to the first group. Finally, the rest of the sub patterns are decomposed into the first group and the second group according to a design rule, wherein the sub patterns in the same line are decomposed into the first group and the second group alternatively.
Abstract:
A method for generating a layout pattern is provided. First, a layout pattern is provided to a computer system and is classified into two sub-patterns and a blank pattern. Each of the sub-patterns has pitches in simple integer ratios and the blank pattern is between the two sub-patterns. Then, a plurality of first stripe patterns and at least two second stripe patterns are generated. The edges of the first stripe patterns are aligned with the edges of the sub-patterns and the first stripe patterns have equal spacings and widths. The spacings or widths of the second stripe patterns are different from that of the first stripe patterns.
Abstract:
The present invention provides a method for forming at least a photo mask. A first photo-mask pattern relating to a first structure is provides. A second photo-mask pattern relating to a second structure is provides. A third photo-mask pattern relating to a third structure is provides. The first structure, the second structure and the third structure are disposed in a semiconductor structure in sequence. An optical proximity process including a comparison step is provided, wherein the comparison step includes comparing the first photo-mask pattern and the third photo-mask pattern. Last, the first photo-mask pattern is import to form a first mask, the second photo-mask pattern is import to form a second mask, and the third photo-mask pattern is import to form a third mask. The present invention further provides an OPC method.
Abstract:
A method for fabricating minimal fin length includes the steps of first forming a fin-shaped structure extending along a first direction on a substrate, forming a first single-diffusion break (SDB) trench and a second SDB trench extending along a second direction to divide the fin-shaped structure into a first portion, a second portion, and a third portion, and then performing a fin-cut process to remove the first portion and the third portion.
Abstract:
A manufacturing method for forming a semiconductor structure includes: first, a plurality of fin structures are formed on a substrate and arranged along a first direction, next, a first fin cut process is performed, so as to remove parts of the fin structures which are disposed within at least one first fin cut region, and a second fin cut process is then performed, so as to remove parts of the fin structures which are disposed within at least one second fin cut region, where the second fin cut region is disposed along at least one edge of the first fin cut region.
Abstract:
A calculation method of optical proximity correction includes providing at least a feature pattern to a computer system. At least a first template and a second template are defined so that portions of the feature pattern are located in the first template and the rest of the feature pattern is located in the second template. The first template and the second template have a common boundary. Afterwards, a first calculation zone is defined to overlap an entire first template and portions of the feature pattern out of the first template. Edges of the feature pattern within the first calculation zone are then fragmented from the common boundary towards two ends of the feature pattern so as to generate at least two first beginning segments respectively at two sides of the common boundary. Finally, positions of the first beginning segments are adjusted so as to generate first adjusted segments.
Abstract:
A method for fabricating a semiconductor layout includes providing a first layout having a plurality of line patterns and a second layout having a plurality of connection patterns, defining at least a first to-be-split pattern overlapping with the connection pattern among the line patterns, splitting the first to-be-split pattern at where the first to-be-split pattern overlapping with the connection pattern, decomposing the first layout to form a third layout and a fourth layout, and outputting the third layout and the further layout to a first mask and a second mask respectively.
Abstract:
An inspection method for a photo-mask in a semiconductor process is provided. First, a first photo-mask with a first wafer anchor point (1st wafer FAM) is provided. Then, Dmax and Dmin are calculated according to the 1st wafer FAM. A second photo-mask and a second mask anchor point (2nd mask FAM) of the second photo-mask are provided. A CD average, and a CD range of the second photo-mask are measured. Finally, the second photo-mask is inspected by using equation A and/or equation B: CD average−2nd mask FAM