Abstract:
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
Abstract:
A semiconductor package structure and a method for forming the same are disclosed. The semiconductor package structure includes a semiconductor die, a molding layer and an inductor. The semiconductor die includes an active surface, a back surface and a sidewall surface between the active surface and the back surface. The molding layer covers the back surface and the sidewall surface of the semiconductor die. The inductor is in the molding layer. The sidewall surface of the semiconductor die faces toward the inductor.
Abstract:
A method for fabricating semiconductor device includes providing a preliminary device layer, having a substrate on top and a through substrate via (TSV) structure in the substrate. A top portion of the TSV structure protrudes out from the substrate. A dielectric layer is disposed over the substrate to cover the substrate and the TSV structure. A coating layer is formed over the dielectric layer, wherein the coating layer fully covers over the dielectric layer with a flat surface. An anisotropic etching process is performed to the coating layer and the dielectric layer without etching selection until the TSV structure is exposed.
Abstract:
Provided are a three-dimensional integrated circuit (3DIC) and a method of manufacturing the same. The 3DIC includes a first wafer, a second wafer, and a hybrid bonding structure. The second wafer is bonded to the first wafer by the hybrid bonding structure. The hybrid bonding structure includes a blocking layer between a hybrid bonding dielectric layer and a hybrid bonding metal layer.
Abstract:
A wafer to wafer structure includes a first wafer, a second wafer. A first bonding layer and a second bonding layer are disposed between the first wafer and the second wafer. A plurality of first interconnects are disposed within the he first bonding layer. A plurality of second interconnects are disposed within the second bonding layer. An interface is disposed between the first bonding layer and the second bonding layer. At least a through silicon via penetrates the first wafer, the first bonding layer and the interface to enter the second bonding layer. The through silicon via contacts one of the first interconnects and one of the second interconnects.
Abstract:
The present invention provides a method of forming a chip with TSV electrode. A substrate with a first surface and a second surface is provided. A thinning process is performed from a side of the second surface so the second surface becomes a third surface. Next, a penetration via which penetrates through the first surface and the third surface is formed in the substrate. A patterned material layer is formed on the substrate, wherein the patterned material layer has an opening exposes the penetration via. A conductive layer is formed on the third surface thereby simultaneously forming a TSV electrode in the penetration via and a surface conductive layer in the opening.
Abstract:
A method for fabricating through-substrate structure is disclosed. The method includes the steps of: providing a substrate; forming a through-substrate hole and a through-substrate trench in the substrate; and forming a metal layer in the through-substrate hole and the through-substrate trench for forming a through-substrate via and a through-substrate conductor having a void therein.
Abstract:
The present disclosure relates to an interposer structure and a manufacturing method thereof. The interposer structure includes a first dielectric layer, a conductive pad, and a bump. The conductive pad is disposed in the first dielectric layer, wherein a top surface of the conductive pad is exposed from a first surface of the first dielectric layer, the conductive pad further includes a plurality of connection feet, and the connection feet protrude from a bottom surface of the conductive pad to a second surface of the first dielectric layer. The bump is disposed on the second surface of the first dielectric layer, and the bump directly contacts to the connection feet. Through the aforementioned interposer structure, it is sufficient to achieve the purpose of improving the electrical performance of the semiconductor device and avoiding the signal being loss through the TSV.
Abstract:
The present invention provides a method of forming a chip with TSV electrode. A substrate with a first surface and a second surface is provided. A thinning process is performed from a side of the second surface so the second surface becomes a third surface. Next, a penetration via which penetrates through the first surface and the third surface is formed in the substrate. A patterned material layer is formed on the substrate, wherein the patterned material layer has an opening exposes the penetration via. A conductive layer is formed on the third surface thereby simultaneously forming a TSV electrode in the penetration via and a surface conductive layer in the opening.
Abstract:
The present invention provides a semiconductor device with a shielding structure. The semiconductor device includes a substrate, an RF circuit, a shielding structure and an interconnection system. The substrate includes an active side and a back side. The RF circuit is disposed on the active side of the substrate. The shielding structure is disposed on the active side and encompasses the RF circuit. The shielding structure is grounded. The shielding structure includes a shielding TST which does not penetrate through the substrate. The interconnection system is disposed on the active side of the substrate. The interconnection system includes a connection unit providing a signal to the RF circuit.