摘要:
A method for cleaning of a measuring element (1) passed over by a gas flow is arranged on a thin-walled membranous material (5). The measuring element (1) includes at least one heatable element (6, 7, 8; 10, 11), which is arranged on the membranous material, the membranous material being capable of vibrating. By means of a control apparatus (20) or a switching (22) associated with the measuring element, a periodic delivery of current (41, 42) in intervals takes place in this manner to at least one heatable element (6, 7, 8; 10, 11) of the measuring element (1) and thereby produces vibrations. Alternatively, vibrations of the membranous material (5) can be produced by special vibration exciters or by means of ultrasonic coupling.
摘要:
A miniaturized temperature-zone flow reactor, used for thermally controlled biochemical or molecular-biological processes, especially polymerase chain reaction (PCR) enables more efficient reactions by providing at least one closed flow path which is divided into three partial paths (A1 . . . An; B1 . . . Bn and BB1 . . . BBn−1; C1 . . . Cn) with the reactor having three substrate chips (A; B; C) which are made of a material having a high heat conductivity, and which have defined channel sections that are spaced apart relative to each other, and are connected by a connecting chip (V) made of a poor heat-conductive material. The substrate chips (A; B; C) are maintained at different temperatures by various means, including the use of controlling heating elements in contact with the chips.
摘要:
Method for identifying a novel biologically active substance, which is based on defining the targeted property of the substance and selecting a reference organism, naturally displaying the targeted property.
摘要:
Disclosed are devices for holding a substance library carrier, and which are useful in conducting reactions in which binding between complementary molecules is measured qualitatively or quantitatively. Also disclosed are methods for conducting such reactions in the device.
摘要:
A sensor chip having at least upstream from the sensor region, at least one potential surface that, by electrical interaction with the contaminants in the flowing medium, prevents precipitation in the sensor region.
摘要:
The present invention relates to novel thin layers for microsystem techniques and microstructuring. It is an object of the invention to provide thin layers which can be manufactured under less problems and more economically than the previous conventional layers, and which permit the use of existing technologies for microstructuring. The object is realized in that the thin layer is formed of an enzymatically degradable biopolymer in a range of layer thicknesses of from 30 nm to 3 &mgr;m. Biopolymeric thin layers manufactured according to the invention permit their application, after a respective structurizing, as test assays or in setting up substance libraries.
摘要:
In a photo-thermal sensor for determining the concentration of a compound in a sample which includes an excitation light source generating a first light beam of a wave length which is well absorbed by the compound to be determined, a modulator and an optical lens system disposed in the first light beam such that the first light beam is constricted at the location of the sample through which it is directed, a probe light source generating a second light beam extending at a right angle to the first light beam, a beam divider arranged at the intersection of the first and second light beams whereby part of the first light beam is deflected at one side of the beam divider and the second light beam passes through the beam divider such that both beams incide on the sample anti a photo-sensitive detector arranged in the light beam path behind the sample, a diaphragm is arranged in the beam path directly after the sample and an expansion lens adapted to expand the second light beam at the location of the sample to a diameter at least 5 times the diameter of the first light beam is disposed in the path of the second beam ahead of the beam divider for determining the loss of strength of the second light beam reaching the detector after passage through the sample and the diaphragm as an indication of the concentration of the compound in the sample.
摘要:
A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte. Capillary structures of the devices or used in the methods may comprise a matrix and the devices may comprise control elements and methods for assaying of sample may use corresponding controlling activities.
摘要:
The present invention relates to devices and methods for performing assays, especially for determining the presence and/or amount of one or more analytes. In particular, the invention relates to a device for the detection of analytes, comprising a reversibly compressible matrix located between a first surface and a second surface, wherein the second surface is located opposite to the first surface, and wherein the distance between the first surface and the second surface is variable. The invention also relates to a corresponding method using such a device for the detection of one or more species of analytes.
摘要:
A method for assaying a sample for each of multiple analytes is described. The method includes contacting an array of spaced-apart test zones with a liquid sample (e.g., whole blood). The test zones disposed within a channel of a microfluidic device. The channel is defined by at least one flexible wall and a second wall which may or may not be flexible. Each test zone comprising a probe compound specific for a respective target analyte. The microfluidic device is compressed to reduce the thickness of the channel, which is the distance between the inner surfaces of the walls within the channel. The presence of each analyte is determined by optically detecting an interaction at each of multiple test zones for which the distance between the inner surfaces at the corresponding location is reduced. The interaction at each test zone is indicative of the presence in the sample of a target analyte.