Abstract:
The invention relates to method for deriving a sub-right from a right, the right comprising a plurality of components, each of which specifies an aspect of the right. A component may be, for example, a principal, an action, a resource, and a condition. The invention also relates to a method for integrating a first right with a second right. Furthermore, the invention relates to a method of sharing rights by deriving a sub-right from a right, allowing use of the sub-right, and integrating the sub-right with the right. In addition, the invention relates to a system to support rights sharing by enabling the derivation of a sub-right from a right, the right comprising plural components each of which specifies an aspect of the right, the system comprising a receiving module for receiving a sub-right, the sub-right comprising plural components each of which specifies an aspect of the sub-right, and a confirmation module for confirming that the values of the components of the sub-right can be derived from the values of the corresponding components of the right. The invention further relates to a method for deriving a sub-right from a pool of rights granted by a grantor to a grantee for controlling use of resources within a computing environment, the computing environment having a mechanism for enforcing rights within the environment to control use of resources in accordance with the rights.
Abstract:
The garbage container, having a simple structure, a reliable performance, and being easy to install and cost effective, includes a container body, an infrared induction device, a movable cover automatically opened through infrared induction device, an infrared induction device, an automatic cover-opening device connected with the control unit, an output shaft of the driving motor connected with a cable-collecting wheel via a first set of reduction gears. One end of the cable is fixed to the cable-collecting wheel while the other end of the cable is connected with the cover. An output shaft of the cable-collecting wheel is connected with a cam via a second set of reduction gears. The protruding part of the cam is rotated to contact a cover-opening stroke switch and a cover-closing stroke switch respectively. The cover-opening stroke switch and the cover-closing stroke switch are connected respectively with the control unit through a data line.
Abstract:
A system and method for distribution of digital works in a tree-like structure of devices. A hierarchical right may include a first usage right governing a use for the digital work and a first delegation right governing distribution of the digital work to child nodes of the tree-like structure. A second usage right and/or a second delegation right may be generated based on the hierarchical right, the second usage right governing a use for the digital work and the second delegation right governing distribution of the digital work to child nodes of a first child node of the tree-like structure. The second usage right and/or the second delegation right may be assigned to a version of the digital work, and the second usage right and/or the second delegation right and the version of the digital work may be forwarded to the first child node.
Abstract:
The invention provides a method of fabricating a semiconductor device that enhances the amount of stress that is transmitted to the channel region for carrier mobility enhancement. In one embodiment an amorphous region is formed at or near the gate dielectric interface prior to source/drain anneal. In a second embodiment the gate material is amorphous as deposited and processing temperatures are kept below the gate material crystallization temperature until stress enhancement processing has been completed. The amorphous gate material deforms during high temperature anneal and converts from an amorphous to a polycrystalline phase allowing more stress to be transmitted into the channel region. This enhances carrier mobility and improves transistor drive current.
Abstract:
An embedded memory device and method of forming MOS transistors having reduced masking requirements and defects using a single drain sided halo implant in the NMOS FLASH or EEPROM memory regions is discussed. The memory device comprises a memory region and a logic region. Logic transistors within the logic region have halos implanted at an angle underlying the channel from both drain and source region sides. Asymmetric memory cell transistors within the memory region receive a selective halo implant only from the drain side of the channel and not from the source side to form a larger halo on the drain side and leave a higher dopant concentration more deeply into the source side. One method of asymmetrically forming memory cell transistors comprises masking over the memory region; halo implanting a first conductivity dopant in NMOS regions of the logic region in first and second implant directions; masking over the logic region; halo implanting the first conductivity dopant in NMOS regions of the memory region in the second implant direction only, thereby reducing the number of masks required; masking over the memory region; halo implanting a second conductivity dopant in PMOS regions of the logic region in the first and second implant directions.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
A method for manufacturing a trench MOSFET semiconductor device comprises: providing a heavily doped N+ silicon substrate; forming an N type epitaxial layer; forming a thick SiO2 layer; creating P body and source area formations by ion implantation without any masks; utilizing a first mask to define openings for a trench gate and a termination; thermally growing a gate oxide layer followed by formation of a thick poly-Silicon refill layer without a mask to define a gate bus area; forming sidewall spacers; forming P+ areas; removing the sidewall spacers; depositing tungsten to fill contacts and vias; depositing a first thin barrier metal layer; depositing a first thick metal layer; utilizing a second metal mask to open a gate bus area; forming second sidewall spacers; depositing a second thin barrier metal layer; depositing a second thick metal layer; and planarizing at least the second thick metal layer and the second thin metal layer to isolate the source metal portions from gate metal portions, whereby the trench MOSFET semiconductor device is manufactured utilizing only first and second masks.
Abstract:
An enhanced library accessible by an EDA tool can include a base curve database and a plurality of curve data sets. Each curve data set refers to a standard cell having certain timing characteristics. To determine those timing characteristics, each curve data set identifies at least one base curve (in the base curve database) as well as a starting current, a peak current, a peak voltage, and a peak time. In one embodiment, each base curve can be normalized. The base curve(s), the starting current, peak current, peak voltage, and peak time can accurately model the functioning of the IC device, e.g. represented by an I(V) curve.
Abstract:
This invention provides an apparatus and method for preamble detection and integer carrier frequency offset estimation, which method comprises the steps of: determining the window of useful subcarriers in preamble transformed to frequency domain based on pre-determined possible integer carrier frequency offset and the length of the preamble, so as to select the useful subcarriers; extracting a plurality of subcarrier sequences having a length equal to that of the preamble from the useful subcarriers; calculating conjugative multiplications of each subcarrier and its neighboring subcarriers in the subcarrier sequences extracted; acquiring the real part of the conjugative multiplications; calculating the cross correlations between the real part of the conjugative multiplications and known preambles modulated by DBPSK, and outputting the calculated correlation values; and detecting preamble index of a target base station with the calculated correlation values to select a target cell, and estimating integer carrier frequency offset with respect to the target base station.