Abstract:
A laminated sliding member 1 includes a base body 4 having one flat surface 3 which is circular in a plan view and a solid lubricant layer 5 adhered to the flat surface 3 of the base body 4 and having a sliding surface 2 which is circular in a plan view.
Abstract:
The invention relates to a method for preparing metal workpieces for cold forming by first applying a phosphate layer and then applying a lubricant layer which has a major content in organic polymer material. The phosphate layer is formed by an aqueous acidic phosphating solution having a major content in calcium, magnesium or manganese and phosphate. The lubricant layer is formed by contacting the phosphated surface with an aqueous lubricant composition which has a content in organic polymer material based on ionomer and optionally also non-ionomer the organic polymer material used predominantly being monomers, oligomers, co-oligomers, polymers or copolymers based on ionomer, acrylic acid/methacrylic acid, epoxide, ethylene, polyamide, propylene, styrene, urethane, the ester or salt thereof. The invention also relates to the corresponding lubricant composition, to the lubricant layer produced thereof and to its use.
Abstract:
Provided is a grease composition with a long service life under high-temperature conditions, considerable low-evaporability, and incombustibility.The invention provides a grease composition comprising, as a base oil, an ionic liquid formed of a cation and an anion and having an ion concentration of 1 mol/dm3 or more as measured at 20° C., and a thickener, wherein the grease composition has a dropping point of 260° C. or higher.
Abstract:
A solid lubricant formulation useful for lubricating the flanges of locomotive wheels, railcar wheels, rail tracks and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant formulation including at least one non-polylactic acid-based polymeric carrier, at least one polylactic acid-based polymer, and at least one lubricant powder.
Abstract:
A high-temperature lubricant for the hot processing of metals comprising a mixture of fine-powder materials. To provide a high-temperature lubricant having good trickle and flow characteristics for dissolving scale on heated metal surfaces, which applied in powder form permits good coverage of the metal surface and which even after prolonged storage under production conditions still has good trickle and flow characteristics without severe lump formation and which avoids the use of graphite, in accordance with the invention it is proposed that the mixture includes at least the following constituents (a) a secondary and/or tertiary calcium phosphate compound, (b) a fatty acid or a fatty acid salt, (c) boric acid, a boric acid salt (borate) and/or a mineral containing boric acid salt (borate), and (d) condensed alkali metal phosphates, and wherein the constituents of the mixture have a mean grain size of ≦150 μm and the lubricant does not contain any addition of graphite.
Abstract:
A method for treatment of bacterial infections with rifalazil administered once-weekly, or twice-weekly. A method for treatment of tuberculosis caused by Mycobacterium tuberculosis, infections caused by Mycobacterium avium complex, infections caused by Chlamydia pneumoniae and infections caused by Helicobacter pylori by administering to a patient suffering from the bacterial infection 1-100 mg of rifalazil once or twice a week. In this dose regimen, the treatment is fast, efficacious and eliminates undesirable secondary symptoms observed with daily doses of 1-50 mg of rifalazil.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.
Abstract:
A substrate is coated with an essentially water-free composition. The composition includes a superabsorbent polymer that absorbs from about 25 to greater than 100 times its weight in water and a material for lubricating the substrate. The superabsorbent polymer may be a polymer of acrylic acid, acrylamide or acrylate. Also included is a method for protecting a substrate from the effects of water or water migration.
Abstract:
A process is disclosed for manufacturing a lubricant composition comprising combining a superabsorbent polymer with a material for decreasing friction between moving surfaces. The superabsorbent polymer absorbs from about 25 to greater than 100 times its weight in water and may comprise a polymer of acrylic acid, an acrylic ester, acrylonitrile or acrylamide, including co-polymers thereof or starch graft co-polymers thereof or mixtures thereof. A product produced by the process includes the material for decreasing friction comprising a petroleum lubricant containing an additive, water containing an additive, synthetic lubricant, grease, solid lubricant or metal working lubricant, wherein the synthetic lubricant, grease, solid lubricant or metal working lubricant optionally contain an additive. A process comprising controlling the delivery of a lubricant to at least one of two moving surfaces in order to decrease friction between said moving surfaces, is also disclosed. This process includes applying the lubricant composition to at least one of the surfaces. The lubricant composition in this instance comprises a superabsorbent polymer combined with a material for decreasing friction between moving surfaces, wherein the material for decreasing friction comprises a petroleum lubricant, water, synthetic lubricant, grease, solid lubricant or metal working lubricant, and optionally an additive.