Abstract:
A high-voltage electronic device comprising high-voltage electrodes, located in a dielectric envelope with an internal surface coated with a material having a conductivity which is greater than the conductivity of the envelope, characterized in that the areas subject to high field strength are coated with composite material, based on a polycrystalline material with a bulk conductivity of particles 10−9 to 10−13 Ohm−1 cm−1, each of which contains a surface nanolayer of bonding inorganic material. The high-voltage electrodes may be placed in a vacuum envelope and fixed on coated insulators. Preferred coating materials include materials from a group of materials comprising; oxides of chromium, boron or zirconium in the form of polycrystalline porous substance with a particle size of 30 nm-30 microns, connected to each other with an inorganic material, for instance silicon oxide (SiO2) with a layer thickness not more than 100 nm.
Abstract:
The method of forming a radiation shielding structure includes a first adhesive layer, a resin layer, and a metal foil laminated sequentially on a release layer of a plastic film. A metal layer pattern is formed from the metal foil. The first adhesive layer, the resin layer, and the metal layer pattern are formed sequentially from the bottom on a transparent substrate by separating the release layer from the first adhesive layer along an interface and then adhering the first adhesive layer to the transparent substrate.
Abstract:
An impact-resistance film for a flat display panel which is to prevent breakage and scattering of glass of the panel when panel receives an impact and which at the same time makes the weight reduction and thickness reduction possible, is presented. An impact-resistant film 30 for a flat display panel, which is an impact-resistant film to be bonded to a front glass 22 of a flat display panel main body 21 and which comprises a first layer 23 on the front glass side of the flat display panel, made of a transparent synthetic resin having a shear modulus of from 1×103 Pa to 1×106 Pa, a second layer 24 on the viewer's side of the first layer, made of a transparent synthetic resin having a shear modulus of at least 1×108 Pa, and a third layer 25 on the viewer's side of the second layer, made of a transparent synthetic resin having a shear modulus of at least 1×106 Pa and less than 1×108 Pa.
Abstract:
A plastic film screen protector that prevents interference patterns from arising when the film touches the screen is described. The advantages are accomplished by the film having a slightly roughened surface so that the majority of the film facing an electronic device screen does not substantially touch the screen. These physical aberrations prevent Newton ring interference patterns and spots caused by refractive index differences between air and the film material.
Abstract:
A lamp comprises a glass substrate and a shading film. The shading film is formed by applying a greensheet comprising an inorganic pigment and an inorganic matrix compound to a surface of the glass substrate and then, firing the greensheet. The formed shading film has a portion whose thickness is 90% or more of the maximum thickness of the shading film within the range of 0.5 mm from an edge of the shading film.
Abstract:
A reflector lamp having a lens of vitreous material fused to a reflector body of vitreous material. An inner reflector surface of the reflector body includes a reflective coating having a first coating portion extending from the rim of the reflector body and a second coating portion extending from a location spaced from the rim towards a basal end of the reflector body. The second coating portion is a layer of silver and the first coating portion is a layer of material other than silver, such as aluminum, having a higher resistance to damage by high heat in the rim area during fusing of the lens to the reflector body. Higher efficacies are achieved with the silver layer spaced from the rim than with silver covering the entire reflector surface.
Abstract:
A coating solution composition for forming a glass gel thin film, contains at least one material selected from the group consisting of a metal alkoxide and a polycondensate of the metal alkoxide, a coloring material, an alcohol solvent, and a dispersant having an adsorption material for the coloring material, soluble in the alcohol solvent, and having miscibility with the metal alkoxide, wherein the coloring material has an average particle size of 3 nm to 300 nm. A glass gel thin film obtained by sintering this composition at a temperature of 100.degree. to 300.degree. C. is excellent in water resistance, durability and has a high strength.
Abstract:
A process for printing a light bulb having a multicolored design which comprises the steps of attaching a transfer film having a multicolored design onto the surface of a conventional light bulb, and burning the transfer film attached to the light bulb at a temperature of about 550.degree.-650.degree. C. so as to leave the multicolored design on the surface of the light bulb which exhibits high durability and an excellent appearance of beauty.