Abstract:
A semiconductor luminescent device is disclosed of the MIS type which has a semiconductor body, a semiconductor monocrystalline insulating layer on one surface of the body and an electrode on the outer major surface of the insulating layer, which electrode is light transmissive. The crystal structure of the insulating layer is substantially the same as the crystal structure of the semiconductor body and has a spacing of energy bands which is greater than the light quanta which are emitted during a radiative recombination of charge carriers in the semiconductor body. The interval of the energy bands of the insulating layer is at least 2 kT greater than the interval of the energy bands of the semiconductor body. It is preferable that the crystal structure of the insulating layer have a deviation of its lattice interval of less than 1% from that of the semiconductor body.
Abstract:
A vertical current mode solid state device comprising a connection pad and side walls comprising a metal-insulator-semiconductor (MIS) structure, wherein leakage current effect of the vertical device is limited through the side walls by biasing the MIS structure.
Abstract:
Light-emitting devices are disclosed. In some embodiments, the devices may emit light when a tunneling current is generated within the device.
Abstract:
The invention provides a light emitting semiconductor device comprising a zinc magnesium oxide based layer as active layer, wherein the zinc magnesium oxide based layer comprises an aluminum doped zinc magnesium oxide layer having the nominal composition Zn1-xMgxO with 1-350 ppm Al, wherein x is in the range of 0
Abstract:
The invention provides a light emitting semiconductor device comprising a zinc magnesium oxide based layer as active layer, wherein the zinc magnesium oxide based layer comprises an aluminum doped zinc magnesium oxide layer having the nominal composition Zn1-xMgxO with 1-350 ppm Al, wherein x is in the range of 0
Abstract:
There is provided a light emitting device of a simpler structure, capable of ensuring a broad light emitting area and a high light emitting efficiency, while manufactured in a simplified and economically efficient process. The light emitting device including: a semiconductor layer; an active layer formed on the semiconductor layer, the active layer comprising at least one of a quantum well structure, a quantum dot and a quantum line; an insulating layer formed on the active layer; and a metal layer formed on the insulating layer.
Abstract:
Provided is an optical device having a strained buried channel area. The optical device includes: a semiconductor substrate of a first conductive type; a gate insulating layer formed on the semiconductor substrate; a gate of a second conductive type opposite to the first conductive type, formed on the gate insulating layer; a high density dopant diffusion area formed in the semiconductor substrate under the gate and doped with a first conductive type dopant having a higher density than the semiconductor substrate; a strained buried channel area formed of a semiconductor material having a different lattice parameter from a material of which the semiconductor substrate is formed and extending between the gate insulating layer and the semiconductor substrate to contact the high density dopant diffusion area; and a semiconductor cap layer formed between the gate insulating layer and the strained buried channel area.
Abstract:
A detector includes a voltage source for providing a bias voltage and first and second non-insulating layers, which are spaced apart such that the bias voltage can be applied therebetween and form an antenna for receiving electromagnetic radiation and directing it to a specific location within the detector. The detector also includes an arrangement serving as a transport of electrons, including tunneling, between and to the first and second non-insulating layers when electromagnetic radiation is received at the antenna. The arrangement includes a first insulating layer and a second layer configured such that using only the first insulating in the arrangement would result in a given value of nonlinearity in the transport of electrons while the inclusion of the second layer increases the nonlinearity above the given value. A portion of the electromagnetic radiation incident on the antenna is converted to an electrical signal at an output.
Abstract:
A modulator includes a voltage source, a first arrangement including first and second non-insulating layers configured such that a modulation voltage from the voltage source can be applied there across, and a second arrangement between the first and second non-insulating layers. The second arrangement includes a first amorphous layer configured such that a transport of electrons between the first and second non-insulating layers includes tunneling. The first arrangement further includes an antenna structure for absorbing part of an input radiation, while a remainder of the input radiation is reflected. The second arrangement cooperates with the first arrangement such that the antenna exhibits a first absorptivity, when a first modulation voltage is applied to the first arrangement, and exhibits a distinct, second absorptivity, when a second modulation voltage is applied, thereby causing the antenna to reflect a different amount of input radiation to an output as modulated radiation.