Abstract:
After a gate oxide film 10 has been formed on a silicon substrate G, a first step of forming a microcrystalline silicon film by high electron density plasma of an electron temperature of 2.0 eV or less and a second step of forming an ultra-microcrystalline silicon film by high electron density plasma of an electron temperature higher than 2.0 eV are repeated. A stacked-layer film 20 of the ultra-microcrystalline silicon film and the microcrystalline silicon film is thereby formed. With the film formation method described above, at least one of an n-channel thin-film transistor and a p-channel thin-film transistor with the stacked-layer film 20 functioned as an active layer may be manufactured.
Abstract:
A method and apparatus for forming solar cells is provided. Doped crystalline semiconductor alloys including carbon, oxygen, and nitrogen are used as light-trapping enhancement layers and charge collection layers for thin-film solar cells. The semiconductor alloy layers are formed by providing semiconductor source compound and a co-component source compound to a processing chamber and ionizing the gases to deposit a layer on a substrate. The alloy layers provide improved control of refractive index, wide optical bandgap and high conductivity.
Abstract:
A method of manufacturing a solar cell includes forming a transparent conductive layer on a substrate by depositing a transparent conductive oxide under room temperature, crystallizing the transparent conductive layer by irradiating a laser beam to the transparent conductive layer using a first laser; selectively etching the crystallized transparent conductive layer to form embossed and depressed patterns at a surface of the transparent conductive layer; forming transparent electrodes in unit cells by patterning the transparent conductive layer having the embossed and depressed patterns; forming a p-n junction semiconductor layer on the transparent electrodes and patterning the p-n junction semiconductor layer; and forming rear electrodes on the patterned p-n junction semiconductor layer by forming a metallic material layer and patterning the metallic material layer, the rear electrodes corresponding to the unit cells.
Abstract:
The present disclosure relates to methods and related cleaning solutions (116) for cleaning a glass substrate (10, 112), such as for removing metal ion contaminates from a glass substrate (10, 112) having a transparent conductive oxide layer (12). One method includes: providing a glass substrate (10, 112) having a transparent conductive oxide (TCO) layer (12); and exposing the glass substrate (10, 112) to a cleaning solution (116) that includes 0.5% to 5% organic acid, wherein the organic acid used includes citric acid, acetic acid, or oxalic acid.
Abstract:
A multi-junction thin film semiconductor photovoltaic devices having improved absorption properties and increased efficiencies and methods for making the same are disclosed.
Abstract:
A solar cell, a method and apparatus for manufacturing a solar cell, and a method of depositing a thin film layer are disclosed. The manufacturing apparatus of a solar cell includes a substrate; a first electrode disposed on the substrate; a second electrode; and a photoelectric conversion layer disposed between the first electrode and the second electrode, wherein the photoelectric conversion layer includes a micro-crystalline silicon layer, and sensitivity of the micro-crystalline silicon layer is about 100 to about 1,000, the sensitivity being a ratio expressed as photo conductivity (PC)/dark conductivity (DC).
Abstract:
A highly-efficient photoelectric conversion device is provided without complicating the manufacturing process. The photoelectric conversion device includes a unit cell having a semiconductor junction, in which a first impurity semiconductor layer having one conductivity type, a semiconductor layer including a first semiconductor region having a larger proportion of a crystalline semiconductor than an amorphous semiconductor and a second semiconductor region having a larger proportion of an amorphous semiconductor than a crystalline semiconductor and including both a radial crystal and a crystal having a needle-like growing end in the amorphous semiconductor, and a second impurity semiconductor layer having a conductivity type opposite to the conductivity type of the first impurity semiconductor layer are stacked in this order.
Abstract:
A method of fabricating a solar cell includes: sequentially forming a first electrode and a first impurity-doped semiconductor layer on a transparent substrate; forming a first intrinsic semiconductor layer on the first impurity-doped semiconductor layer; heating the first intrinsic semiconductor layer to form a second intrinsic semiconductor layer; and sequentially forming a second impurity-doped semiconductor layer and a second electrode on the second intrinsic semiconductor layer.
Abstract:
The present invention generally comprises a method for dynamically controlling the temperature of a solar cell substrate during microcrystalline silicon deposition. In amorphous silicon/microcrystalline tandem solar cells, microcrystalline silicon may be deposited using a higher power density and to a greater thickness than amorphous silicon. The higher the power density applied, the faster the deposition may occur, but the temperature of the deposition may also increase. At high temperatures, the likelihood of dopant diffusing into the intrinsic layer of the solar cell and damaging the cell is greater. By dynamically controlling the temperature of the susceptor, the substrate and hence, the dopant can be maintained at a substantially constant temperature below the value at which the dopant may diffuse into the intrinsic layer. The dynamic temperature control permits the microcrystalline silicon to be deposited at a high power density without damaging the solar cell.
Abstract:
A method for depositing a silicon film on a substrate includes a step of flowing a first silicon-containing gaseous composition through an electric discharge generated to form a second silicon-containing composition that is different than the first silicon-containing composition. The second composition is directed into a deposition chamber to form a silicon-containing film on one or more substrates positioned within the deposition chamber. The formation of crystalline silicon is controlled by the temperature of the deposition. Optionally, an activated hydrogen-containing composition is introduced into the deposition chamber during film deposition. The activated hydrogen-containing composition is formed by exposing hydrogen gas to microwave radiation.