Abstract:
A data communication controller having a memory access control unit characterized by a symmetrical access port architecture. The memory access control unit allows both a host processor and the medium access control (MAC) unit of the data communication controller to transparently access a single-port data packet buffer memory while operating at full specified operating speed and without interference between simultaneous memory access requests. The memory access control unit arbitrates asynchronous memory access requests from both the host processor and the medium access control unit, while permitting each of these processors unlimited access to the single-port buffer memory as if it alone had the full memory available to itself at all times. The above capabilities are achieved using automatic address incrementation and data-byte prefetching operations, without requiring the use of a port processor or additional internal data buses.
Abstract:
A lower power, noise rejecting TTL-to-CMOS input buffer, without the use of a current consuming voltage reference, has the characteristic of recognizing a logic LOW as less than 0.8 volts and a logic HIGH as greater than 2.0 volts for DC TTL signals while drawing only leakage current from its Vcc power supply, and simultaneously possesses the characteristic of rejecting high-amplitude Vin noise. For an input signal rapidly rising from zero to three volts, the buffer output switches at an input signal level of approximately 2.5 volts; and for the input signal rapidly falling from 3 to zero volts, the buffer output switches at an input signal level of approximately 1.4 volts.
Abstract:
In a method for fabricating an MOS structure, in accordance with one embodiment, a layer of material that serves as an etching stop during the side wall spacer etch, is inserted between the silicon substrate and the side wall spacer. In another embodiment of the invention, after establishing differential layer thicknesses on the source/drain surface, the side wall spacer is completely removed and light and heavy ion implantation steps are performed sequentially with one single lithographic step. In a further embodiment of the invention, after the self-aligned silicide is formed, the side wall spacer is removed, and light and heavy ion implantation steps are sequentially performed.
Abstract:
A method is disclosed for fabricating submicron silicon gate metal-oxide-semiconductor field effect transistors (MOSFETs) which have threshold and punchthrough implants that are self-aligned to the gate electrode and source and drain regions. A layer of dielectric material (12) is either deposited or grown on the surface of a substrate, and a trench (15), which defines the region of the MOSFET gate electrode, is formed in the dielectric layer. A gate oxide (16) is formed at the exposed substrate at the bottom of the trench, and an implant is performed into the silicon substrate wherever there is gate oxide, but not into the portion of the substrate covered by the original dielectric layer. A layer of polysilicon (20), preferably doped, or another metallic film is then deposited onto the surface. The polysilicon is etched back to the top surface of the dielectric layer, thereby leaving polysilicon in the trench to form the gate electrode (24). The dielectric layer (12) is then etched back preferentially to a thickness approximately equal to the thickness of the gate dielectric, and a high-dose implant is performed through the reduced thickness dielectric layer into the silicon substrate, except for the areas covered by the polysilicon gate to form the source and drain regions (30) of the MOSFET.
Abstract:
In a local area network, a plurality of nodes are connected to a single port of a hub through a length of cable and a corresponding plurality of transceivers attached to the cable, each of the transceivers having an output impedance significantly greater than the cable characteristic impedance, thereby allowing a plurality of nodes to be connected to one hub port with a single cable.
Abstract:
A method is disclosed for fabricating a VLSI multilevel metallization integrated circuit in which a first dielectric layer (10), a thin silicon layer (16), and then a second dielectric layer (18) are deposited on the upper surface of a substrate. A trench (20) is formed in the upper, second dielectric layer leaving a thin layer of the second dielectric layer overlying the thin silicon layer. A contact hole (26) is then etched through the central part of the thin layer of the second dielectric layer, the thin silicon layer and the first dielectric layer to the surface of the substrate. Using the remaining outer portion (24a) of the thin layer of the dielectric layer as a mask over the underlying portion of the thin silicon layer, metal (28) such as tungsten is selectively deposited into the contact hole. The remaining portion of the thin layer of the second dielectric layer is then removed and the trench is selectively filled with a metal that is in electrical contact with the metal filling the contact hole.
Abstract:
An integrated circuit structure includes a substrate, diffused regions formed in the upper surface of the substrate, and thin and thick insulative regions, polycrystalline regions, and metallic interconnections selectively formed overlying selected areas of the substrate surface. An insulating passivation layer overlying the integrated circuit provides mechanical protection for the integrated circuit. Openings are selectively formed in the passivation layer overlying a portion of the integrated circuit at a position other than that of a bonding pad, and above one of the polycrystalline regions positioned over one of the thin insulating regions. The openings may be used to perform ion implantation to modify theelectrical characteristics, such as the threshold voltage, of the integrated circuit at those locations. The disturbance produced in the lattice structure of the silicon substrate during selective ion implantation may, in one aspect of the invention, not be annealed out in subsequent processing steps such that the remaining lattice disturbance further modifies the threshold voltage at the selected implanted locations.
Abstract:
An internal bias generator for providing a negative bias voltage to the substrate of an MOS integrated circuit at a magnitude higher than the power supply voltage includes a pump circuit which comprises a plurality of switches which are sequentially actuated by nonoverlapping clock signals to alternately charge and discharge a capacitor. The clock signals are produced by a generator which includes a series of RC-delay inverting amplifier stages coupled to a series of NOR gates. The bias generator further comprises a threshold-sensitive regulator which uses the source-body effect of substrate bias on the threshold voltage of an MOS FET to control the magnitude of the applied bias voltage. When the sensed threshold voltage deviates from a desired level, certain of the clock signals are disabled, thereby to modify the bias voltage applied to the substrate in a manner to tend to restore the threshold voltage to its desired level.
Abstract:
A programmable logic array includes a plurality of MOS switching devices formed at preselected locations in an array made up of input and output lines and intersecting product term lines. One group of MOS devices constituting the "AND" plane arranged at the intersections of the input lines and product term lines performs a logic operation on input signals to the array and outputs logic signals onto the product term lines. A second group of MOS devices constituting the "OR" plane located at the intersections of the output lines and product term lines receives the outputs of the "AND" plane devices and performs a logic operation on those signals to produce a set of output signals that are presented at the outputs of the array for use by an external device. The merged plane array of the invention advantageously includes dual-gate MOS devices as switching elements to reduce the capacitance on the product term lines and output lines and thereby to increase the operating speed of the array. The input and output lines and related MOS devices of the array rather than being arranged in physically separate and distinct input "AND" and output "OR" planes, as in the prior art, are interspersed or merged with one another so as to reduce the amount of interconnect required between the logic array and an external device which provides the inputs to the array and receives the outputs therefrom.
Abstract:
The invention is related to a method and system for temperature regulation of a power switch during charging of a portable device. The method includes the steps of establishing a connection between the portable device and a charging circuit, monitoring a charging current supplied from the charging circuit to the portable device, monitoring a temperature of the power switch, while the portable device is being charged, comparing the monitored temperature with a predefined threshold temperature, and restricting the charging current, based on the comparison.