摘要:
A particle filter for treating exhaust gases includes an SCR catalyst that, when in the presence of a reductant such as ammonia, promotes selective catalytic reduction of NOx; an active oxidation catalyst that promotes oxidation of hydrocarbons and carbon monoxide; and an oxygen storage catalyst that alternately stores and releases oxygen, enhances soot oxidation, and stores NOx at temperatures below optimal SCR functioning. The particle filter may be included in a system having an oxidation catalytic device (OCD) upstream of the particle filter, and optionally includes one or more SCR converters upstream and/or downstream of the particle filter, and/or an ammonia slip catalyst downstream of the particle filter. The system may further be adapted for operation under a high frequency injection fuel control with an OCD having substantial NOx storage material content, or an NSC for improving the efficiency tradeoffs between soot oxidation during filter regeneration and NOx reduction.
摘要:
The invention relates to a process for the cost-effective and environmentally responsible preparation of alkyl indium sesquichloride in high yield and with high selectivity and purity. The alkyl indium sesquichloride prepared in accordance with the invention is particularly suitable, also as a result of its high purity and yield, for preparation of indium-containing precursors in accordance with demand, in high yield and with high selectivity and purity. As a result of the high purity, the indium-containing precursors that are preparable are particularly suitable for metal-organic chemical vapor deposition (MOCVD) or metal-organic vapor phase epitaxy (MOVPE). The novel process according to the invention is characterized by the improved execution of the process, in particular by rapid process control. Owing to targeted and extensive use of raw materials that are inexpensive and have a low level of environmental pollution, the process is also suitable for use on an industrial scale.
摘要:
The invention relates to a catalyst system for reducing nitrogen oxides, which comprises a nitrogen oxide storage catalyst and an SCR catalyst, wherein the nitrogen oxide storage catalyst consists of at least two catalytically active washcoat layers on a supporting body, wherein a lower washcoat layer A contains cerium oxide, an alkaline earth compound and/or alkali compound, as well as platinum and palladium, and an upper washcoat layer B, which is arranged over the washcoat layer A, contains cerium oxide, platinum and palladium, and no alkali compound and no alkaline earth compound. The invention also relates to a method for converting NOx in exhaust gases of motor vehicles that are operated by means of engines that are operated in a lean manner.
摘要:
The present invention is directed to a method for the preparation of ruthenium catalyst (PCy3)2Cl2Ru(phenylindenylidene) (Umicore catalyst “M1”). The method comprises a one-step reaction reacting the precursor compound (PPh3)2Cl2Ru(3-phenylindenylidene) with PCy3 in a cyclic ether solvent (preferably THF) in concentrations in the range of 0.2 to 0.6 mol catalyst/l while simultaneously precipitating the product from the reaction mixture.A cyclic ether solvate product with high crystallinity and high purity is obtained.
摘要:
The invention relates to an improved process for inexpensive and environmentally benign preparation of trialkylgallium compounds of the general formula: R3Ga in high yield and selectivity, where R is alkyl of 1 to 4 carbon atoms. Trialkylgallium is prepared according to the invention via the intermediate stage alkylgallium dichloride (RGaCl2) or dialkylgallium chloride/alkylgallium dichloride mixture (R2GaCl/RGaCl2). The RGaCl2 obtained or the R2GaCl/RGaCl2 mixture also forms part of the subject-matter of the present invention.The novel process of the present invention is notable for improved process management. The process intentionally makes substantial use of inexpensive starting materials and reagents of low environmental impact and so is also useful for the industrial scale.The trialkylgallium compounds obtained are very pure and so are particularly useful as organometallic precursor for metal-organic chemical vapour deposition (MOCVD) or metal-organic vapour phase epitaxy (MOVPE) in semiconductor and microsystem technology.
摘要:
The invention relates to a method for reactivating a system composed of an oxidation catalytic converter (5) followed by a possibly catalytically coated particle filter (6), and to a correspondingly adapted exhaust-gas purification system for lean-burn engines (1) with low pressure EGR (14). The present invention relates in particular to the reactivation of such a system during overrun operation of the engine.
摘要:
The present invention describes a double-layer three-way catalyst on an inert catalyst support comprising a first layer in direct contact with the inert catalyst support, comprising active alumina, a cerium/zirconium mixed oxide and palladium and a second layer applied to the first layer and in direct contact with the exhaust gas to be purified, comprising active alumina and rhodium, characterized in that the second layer is free of cerium and cerium containing materials, the use of such catalyst for cleaning the exhaust gases of a motor vehicle equipped with a gasoline engine and an exhaust gas treatment system comprising such catalyst up stream of a gasoline particulate filter (GPF).
摘要:
The present invention is directed to a special device for fast mixing and precipitation reactions of chemical substances. In particular, the present invention presents a reactor which allows an extremely fast mixing of at least two liquid streams containing highly concentrated dissolved materials from which solid metal compound particles are formed when at least two reactant streams meet, to which optionally a further stream, advantageously containing a dispersion or suspension, may be added.
摘要:
The invention relates to a method for removing carbon monoxide and hydrocarbons from the exhaust gas of lean-burn internal combustion engines, said exhaust gas being passed over a catalyst which contains platinum supported on one or more refractory supporting materials, pure cerium oxide, and optionally an additional noble metal selected from the group consisting of platinum, palladium and rhodium, wherein the pure cerium oxide is in close contact with the noble metal.