Abstract:
A thermoelectric nano-composite including a thermoelectric matrix; a nano-metal particle; and a nano-thermoelectric material represented by Formula 1: AxMyBz Formula 1 wherein A includes at least one element of indium, bismuth, or antimony, B includes at least one element of tellurium or selenium (Se), M includes at least one element of gallium, thallium, lead, rubidium, sodium, or lithium, x is greater than 0 and less than or equal to about 4, y is greater than 0 and less than or equal to about 4, and z is greater than 0 and less than or equal to about 3.
Abstract:
A PRAM and a fabricating method thereof are provided. The PRAM includes a transistor and a data storage capability. The data storage capability is connected to the transistor. The data storage includes a top electrode, a bottom electrode, and a porous PCM layer. The porous PCM layer is interposed between the top electrode and the bottom electrode.
Abstract:
A storage node having a metal-insulator-metal structure, a non-volatile memory device including a storage node having a metal-insulator-metal (MIM) structure and a method of operating the same are provided. The memory device may include a switching element and a storage node connected to the switching element. The storage node may include a first metal layer, a first insulating layer and a second metal layer, sequentially stacked, and a nano-structure layer. The storage node may further include a second insulating layer and a third metal layer. The nano-structure layer, which is used as a carbon nano-structure layer, may include at least one fullerene layer.
Abstract:
A fuel electrode material, a method of preparing the fuel electrode material and a solid oxide fuel cell including the fuel electrode material. The fuel electrode material includes a metal oxide bound to a surface of particles, the particles including nickel, copper or a combination thereof, wherein the metal oxide is an oxide of a metal element selected from the group consisting of cerium, titanium, silicon, aluminum, zirconium and a combination including at least one of the foregoing.
Abstract:
A thermoelectric material containing a dichalcogenide compound represented by Formula 1 and having low thermoelectric conductivity and high Seebeck coefficient: RaTbX2−nYn (1) wherein R is a rare earth element, T includes at least one element selected from the group consisting of Group 1 elements, Group 2 elements, and a transition metal, X includes at least one element selected from the group consisting of S, Se, and Te, Y is different from X and includes at least one element selected from the group consisting of S, Se, Te, P, As, Sb, Bi, C, Si, Ge, Sn, B, Al, Ga and In, a is greater than 0 and less than or equal to 1, b is greater than or equal to 0 and less than 1, and n is greater than or equal to 0 and less than 2.
Abstract:
Disclosed is a polymeric surfactant for high dielectric polymer composites, a method of preparing the same, and a high dielectric polymer composite including the same. The polymeric surfactant for high dielectric polymer composites, which includes a head portion having high affinity for a conductive material and a tail portion having high affinity for a polymer resin, forms a passivation layer surrounding the conductive material in the high dielectric polymer composite including the polymeric surfactant, thus ensuring and controlling a high dielectric constant.
Abstract:
A bulk thermoelectric material includes a matrix, the matrix including a crystalline thermoelectric material; and metal oxide particles disposed in the matrix at a grain boundary or within a crystal structure of the crystalline thermoelectric material.
Abstract:
A thermoelectric material is disclosed. The thermoelectric material is represented by the following formula; (A1-aA′a)4-x(B1-bB′b)3-y. A is a Group XIII element and A′ may be a Group XIII element, a Group XIV element, a rare earth element, a transition metal, or combinations thereof. A and A′ are different from each other. B may be S, Se, Te and B′ may be a Groups XIV, XV, XVI or combinations thereof. B and B′ are different from each other. a is equal to or larger than 0 and less than 1. b is equal to or larger than 0 and less than 1. x is between −1 and 1 and wherein y is between −1 and 1.
Abstract:
A method of growing carbon nanotubes and a method of manufacturing a field emission device using the same is provided. The method of growing carbon nanotubes includes steps of preparing a substrate, forming a catalyst metal layer on the substrate to promote growing of carbon nanotubes, forming an inactivation layer on the catalyst metal layer to reduce the activity of the catalyst metal layer, and growing carbon nanotubes on a surface of the catalyst metal layer. Because the inactivation layer partially covers the catalyst metal layer, carbon nanotubes are grown on a portion of the catalyst metal layer that is not covered by the inactivation layer. Thus, density of the carbon nanotubes can be controlled. This method for growing carbon nanotubes can be used to make an emitter of a field emission device. The field emission device having carbon nanotube emitter made of this method has superior electron emission characteristics.
Abstract:
A phase change random access memory (PRAM), and a method of operating the PRAM are provided. In the PRAM comprising a switching element and a storage node connected to the switching element, the storage node comprises a first electrode, a second electrode, a phase change layer between the first electrode and a second electrode, and a heat efficiency improving element formed between the first electrode and the phase change layer. The heat efficiency improving element may be one of a carbon nanotube (CNT) layer, a nanoparticle layer, and a nanodot layer, and the nanoparticle layer may be a fullerene layer.