摘要:
A method for constructing a magnetic write head for use in perpendicular magnetic recording, the write head having a write pole with a trailing shield. After forming a magnetic write pole such as by masking and ion milling a magnetic write pole layer, a thin layer of alumina is deposited. This is followed by the deposition of a thin layer of Rh. Then, a thick layer of alumina is deposited, having a thickness that is preferably at least equal to the height of the write pole layer. A chemical mechanical polish is then performed until a portion of the Rh layer over the top (trailing edge) of the write pole is exposed. A material removal process such as ion milling is then performed to remove the exposed Rh layer exposing the thin alumina layer there beneath. Since the Rh trailing gap layer is electrically conductive it can also serve as a seed layer for electroplating the magnetic trailing shield.
摘要:
A method for manufacturing a magnetic write head having a write pole with a flared step feature that defines a secondary flare point. The method involves depositing a magnetic write pole material on a substrate and then depositing a magnetic material over the write pole material followed by a non-magnetic material. A first mask is formed having a front edge to define the location of the secondary flare point, and one or more material removal processes are used to remove portions of the magnetic layer and non-magnetic layer that are not protected by this first mask. The first mask is replaced by a second mask that is configured to define a write pole, and an ion milling is performed to define the write pole. Shadowing from the magnetic layer and non-magnetic layer form a flared secondary flare point.
摘要:
A method for manufacturing a magnetic write head that avoids the challenges associated with the formation of fence structures during write pole definition. A magnetic write pole material is deposited. A mask structure is deposited over the magnetic write pole material. The mask structure includes a first hard mask, a marker layer, a physically robust, inorganic RIEable image transfer layer, a second hard mask structure over the image transfer layer and a photoresist layer over the second hard mask. A reactive ion etching process can be used to transfer the image of the photoresist mask and second hard mask layer onto the image transfer layer. An ion milling is performed to define the write pole. A layer of non-magnetic material such as alumina is deposited. An ion milling is performed until the marker layer has been reached, and another reactive ion etching is performed to remove the remaining hard mask.
摘要:
A method for constructing a magnetic write head using an electrical lapping guide to carefully control critical dimensions dining a lapping operation used to define an air bearing surface. The lapping guide is photolithographically patterned in a common photolithographic step with another write head structure so that special relation between the lapping guide and critical dimensions of the write head structure can be carefully maintained. For example, the electrical lapping guide can be patterned in a common photolithographic step as the write pole so that the location of the flare point can he carefully controlled with respect to the location of the lapping guide. A stitched flare structure can also be built together with the electrical lapping guide, then a self-aligned shield can be further built over this stitched flare structure so that both flare point and shield throat can be controlled tightly together by this electrical lapping guide during lapping process. Similarly, the lapping guide can be formed in a common photolithographic step with a trailing shield, so that a critical dimension such as throat height of the trailing shield can be carefully controlled with respect to the electrical lapping guide.
摘要:
A perpendicular magnetic write head having a conformal wrap around trailing shield. The write head includes a write pole that can be configured with a trapezoidal shape as viewed from the Air Bearing Surface (ABS) and which includes a wrap around trailing magnetic shield. The magnetic shield has a trailing portion that is separated from the leading edge of the writ pole by a non-magnetic trailing gap, and has side shield portions that are separated from first and second side portions of the write pole by first and second non-magnetic side gaps. The magnetic shield can be configured with notches at either side of the trailing portion of magnetic shield. These notches can extend in the trailing direction by a distance that is preferably ¼ to 1 times the trailing gap thickness. The width of the straight, trailing portion of the shield is preferable ½ to 1 times of the main pole width.
摘要:
A perpendicular write head having a wrap around trailing shield for reducing stray field writing and adjacent track interference. A method for constructing such a write head allows for excellent control of side shield gap thickness and trailing shield gap thickness, and allows the ratio of side gap to trailing gap thicknesses to be maintained at about two to one as desired. The method includes depositing forming a write pole by constructing a mask which may include a bi-layer hard mask, and then ion milling to form the write pole. Once the write pole has been formed, a layer of alumina or some other non-magnetic material can be conformally deposited. A reactive ion mill (RIM) can be performed to open up the top of the write pole (remove the horizontally disposed portions of the alumina layer). Then, a second layer of alumina or some other non-magnetic material can be deposited, and the write pole can be plated. The thickness of the side shield gaps is defined by the sum of the final thicknesses of the first and second alumina layers, while the thickness of the first magnetic layer defines the thickness of the trailing shield gap.
摘要:
A method for forming a high aspect ratio magnetic structure in a magnetic write head using a combination of chemical mechanical polishing and reactive ion etching.
摘要:
Magnetic write heads and corresponding fabrication methods for bi-layer wrap around shields resulting in dissimilar shield layer widths are disclosed. A gap structure is formed around a main write pole for a magnetic write head. A wrap around shield for the main write pole is fabricated to include a first magnetic layer proximate to the main write pole and a second magnetic layer on the first magnetic layer. A width of the first magnetic layer is less than the width of the second magnetic layer, and back edges of the first and second magnetic layers are coplanar. Further, a throat height of the wrap around shield is maintained between the first and the second magnetic layers because their back edges are coplanar.
摘要:
Magnetic write heads and corresponding fabrication methods for bi-layer wrap around shields resulting in dissimilar shield layer widths are disclosed. A gap structure is formed around a main write pole for a magnetic write head. A wrap around shield for the main write pole is fabricated to include a first magnetic layer proximate to the main write pole and a second magnetic layer on the first magnetic layer. A width of the first magnetic layer is less than the width of the second magnetic layer, and back edges of the first and second magnetic layers are coplanar. Further, a throat height of the wrap around shield is maintained between the first and the second magnetic layers because their back edges are coplanar.
摘要:
Methods of fabricating magnetic write heads and electrical lapping guides (ELG's) using a split gap deposition process is described. A removal process is performed on a magnetic material to define a main write pole and to define a corresponding ELG for the main write pole. A first non-magnetic gap layer is deposited. A mask and liftoff process is performed to deposit an electrically conductive material on the first gap layer disposed along a front edge of the ELG. A second non-magnetic gap layer is then deposited and a shield is fabricated for the write pole.