摘要:
The device comprises two magnetoresistive elements (10, 20) placed relative to each other in magnetostatic interaction in such a manner that a magnetic flux passing between these elements (10, 20) closes through soft ferromagnetic layers (26, 27) of said elements (10, 20). A write device (15) is associated with the elements (10, 20) to control the magnetization of each soft layer (26, 27). A read conductor line (11, 12, 13, 14) is associated with each magnetoresistive element (10, 20) to detect the magnetic state of the soft layer (26, 27) by measuring the corresponding magnetoresistance. The soft ferromagnetic layers (26, 27) of the elements (10, 20) remain oriented substantially in antiparallel relative to each other, while the hard ferromagnetic layers (24) of said elements (10, 20) are oriented substantially in parallel.
摘要:
This magnetic memory with a thermally-assisted write, every storage cell of which consists of at least one magnetic tunnel junction, said tunnel junction comprising at least:one magnetic reference layer, the magnetization of which is always oriented in the same direction at the time of the read of the storage cell; one so-called “free” magnetic storage layer, the magnetization direction of which is variable; one insulating layer sandwiched between the reference layer and the storage layer. The magnetization direction of the reference layer is polarized in a direction that is substantially always the same at the time of a read due to magnetostatic interaction with another fixed-magnetization layer called the “polarizing layer”.
摘要:
Nano-oxide based current-perpendicular-to-plane (CPP) magnetoresistive (MR) sensor stacks are provided, together with methods for forming such stacks. Such stacks have increased resistance and enhanced magnetoresistive properties relative to CPP stacks made entirely of metallic layers. Said enhanced properties are provided by the insertion of magnetic nano-oxide layers between ferromagnetic layers and non-magnetic spacer layers, whereby said nano-oxide layers increase resistance and exhibit spin filtering properties. CPP sensor stacks of various types are provided, all having nano-oxide layers formed therein, including the spin-valve type and the synthetic antiferromagnetic pinned layer spin-valve type. Said stacks can also be formed upon each other to provide laminated stacks of different types.
摘要:
The memory comprises, on a semi-conducting substrate, a matrix of cells arranged in lines and columns and each designed to store an information bit. Each cell of a column comprises a magnetic tunnel junction having a line terminal and a column terminal respectively connected to a line conductor and, by means of a transistor, to a first column conductor associated to said column and to a first adjacent column. A gate of the transistor is connected to a gate conductor. The column terminal of each tunnel junction of said column is connected, by means of an additional transistor, to a second column conductor associated to said column and to a second adjacent column. A gate of the additional transistor is connected to an additional gate conductor. The two transistors associated to a cell can have a common electrode.
摘要:
Nano-oxide based current-perpendicular-to-plane (CPP) magnetoresistive (MR) sensor stacks are provided, together with methods for forming such stacks. Such stacks have increased resistance and enhanced magnetoresistive properties relative to CPP stacks made entirely of metallic layers. Said enhanced properties are provided by the insertion of magnetic nano-oxide layers between ferromagnetic layers and non-magnetic spacer layers, whereby said nano-oxide layers increase resistance and exhibit spin filtering properties. CPP sensor stacks of various types are provided, all having nano-oxide layers formed therein, including the spin-valve type and the synthetic antiferromagnetic pinned layer spin-valve type. Said stacks can also be formed upon each other to provide laminated stacks of different types.
摘要:
Disclosed is a method of making a SVGMR sensor element. In the first embodiment a buffer layer is formed between a seed layer and a ferromagnetic (FM) free layer, the buffer layer being composed of alpha-Fe2O3 having a crystal lattice constant that is close to the FM free layer's crystal constant and has the same crystal structure. The metal oxide buffer layer enhances the specular scattering. In the second embodiment, a high conductivity layer (HCL) is formed over the buffer layer to create a spin filter-SVGMR. The HCL layer enhances the GMR ratio of the spin filter SVGMR. The third embodiment include a pinned FM layer comprising a three layer structure of a lower AP layer, a space layer (e.g., Ru) and an upper AP layer.
摘要翻译:公开了一种制造SVGMR传感器元件的方法。 在第一实施例中,在种子层和不含铁磁性(FM)的层之间形成缓冲层,该缓冲层由α-Fe 2 O 3 3 N 3 晶格常数接近于FM自由层的晶体常数,具有相同的晶体结构。 金属氧化物缓冲层增强了镜面散射。 在第二实施例中,在缓冲层上形成高电导率层(HCL)以产生自旋滤波器-GVGMR。 HCL层增强了旋转过滤器SVGMR的GMR比。 第三实施例包括包括下AP层的三层结构,空间层(例如Ru)和上AP层的钉扎FM层。
摘要:
A magnetoresistive (MR) sensor comprising a layered structure having at least one trilayer comprising a first and a second thin film ferromagnetic layers separated by and in interfacial contact with a third thin film non-metallic magnetic layer. A fourth thin film layer of material is within the first ferromagnetic layer, and the fourth layer has a thickness between a fraction of a monolayer and several monolayers and is located at predetermined distance from the interface between the first and third layers. A current flow is produced through the MR sensor and variations in resistivity of the MR sensor produced by rotation of the magnetization in one or both of the ferromagnetic layers is sensed as a function of the magnetic field being sensed.
摘要:
A magnetoresistive read sensor based on the spin valve effect in which a component of the read element resistance varies as the cosine of the angle between the magnetization directions in two adjacent magnetic layers is described. The sensor read element includes two adjacent ferromagnetic layers separated by a non-magnetic metallic layer, the magnetic easy axis of each of the ferromagnetic layers being aligned along the longitudinal axis of the ferromagnetic layers and perpendicular to the trackwidth of an adjacent magnetic storage medium. The sense current flowing in the sensor element generates a bias field which sets the direction of magnetization in each ferromagnetic layer at an equal, but opposite, angle .theta. with respect to the magnetic easy axis thus providing an angular separation of 2.theta. in the absence of an applied magnetic signal. The magnetizations of both ferromagnetic layers are responsive to an applied magnetic field to change their angular separation by an amount 2.delta..theta..
摘要:
A magnetic device includes a reference layer, the magnetization direction of which is fixed, and a storage layer, the magnetization direction of which is variable. In a write mode, the magnetization direction of the storage layer is changed so as to store a “1” or a “0” in the storage layer. In a reading mode, the resistance of the magnetic device is measured so as to know what is stored in the storage layer. The magnetic device also includes a control layer, the magnetization direction of which is variable. The magnetization direction of the control layer is controlled so as to increase the effectiveness of the spin-transfer torque in the event writing to the storage layer is desired, and to decrease the effectiveness of the spin-transfer torque in the event reading the information contained in the storage layer, without modifying the information, is desired.
摘要:
A magnetoresistive sensor including: a first pinned-magnetization magnetic layer, called pinned layer; a free-magnetization magnetic layer, called sensitive layer, of which the magnetization, in the absence of an external field, is substantially orthogonal to the magnetization of the pinned layer, the pinned and sensitive layers being separated by a first separating layer for magnetic uncoupling; and a layer, called lateral coupling layer, located on the side of the sensitive layer opposite that of the separating layer, the lateral coupling layer serving to control the lateral spin transfer.