Abstract:
Capacitor structures having first electrodes at least partially embedded within a second electrode, and fabrication methods are presented. The methods include, for instance: providing the first electrodes at least partially within an insulator layer, the first electrodes comprising exposed portions; covering exposed portions of the first electrodes with a dielectric material; and forming the second electrode at least partially around the dielectric covered portions of the first electrodes, the second electrode being physically separated from the first electrodes by the dielectric material. In one embodiment, a method further includes exposing further portions of the first electrodes; and providing a contact structure in electrical contact with the further exposed portions of the first electrodes. In another embodiment, some of the first electrodes are aligned substantially parallel to a first direction and other of the first electrodes are aligned substantially parallel to a second direction, the first and second directions being different directions.
Abstract:
A method can include epitaxially growing epitaxial growth material within a logic region of a semiconductor structure. A method can include performing simultaneously with the growing epitaxial growth within an analog region of the semiconductor structure. A method can include performing epitaxial growth to form an epitaxial growth formation that defines an electrode of an analog device within an analog region of the semiconductor structure, wherein the performing includes using a first surface and a second surface as seed surfaces.
Abstract:
Semiconductor devices and methods for forming the devices with middle of line capacitance reduction in self-aligned contact process flow are provided. One method includes, for instance: obtaining a wafer with at least one source, at least one drain, and at least one sacrificial gate; forming a first contact region over the at least one source and a second contact region over the at least one drain; removing the at least one sacrificial gate; forming at least one gate; and forming at least one small contact over the first contact region and the second contact region. An intermediate semiconductor device is also disclosed.
Abstract:
A method of forming a SDB including a protective layer or bilayer and the resulting device are provided. Embodiments include forming a SDB of oxide in a Si substrate; forming a nitride layer over the Si substrate; forming a photoresist over the SDB and a portion of the nitride layer; removing the nitride layer on opposite sides of the photoresist down to the Si substrate, leaving a portion of the nitride layer only under the photoresist; forming a gate above the SBD and the portion of the nitride layer.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to a scaled gate contact and source/drain cap and methods of manufacture. The structure includes: a gate structure comprising an active region; source and drain contacts adjacent to the gate structure; a capping material over the source and drain contacts; a gate contact formed directly above the active region of the gate structure and over the capping material; a U-shape dielectric material around the gate contact, above the source and drain contacts; and a contact in direct electrical contact to the source and drain contacts.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to middle of line structures and methods of manufacture. The structure includes: a plurality of gate structures; source and drain regions adjacent to respective gate structures of the plurality of gate structures; metallization features contacting selected source and drain regions; and recessed metallization features contacting other selected source and drain regions.
Abstract:
The present disclosure generally relates to semiconductor structures and, more particularly, to gate structures and methods of manufacture. The structure includes: a plurality of gate structures comprising a gate cap, sidewall spacers and source and drain regions; source and drain metallization features extending to the source and drain regions; and a liner extending along an upper portion of the sidewall spacers of at least one of the plurality of gate structures.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to faceted epitaxial source/drain regions and methods of manufacture. The structure includes: a gate structure over a substrate; an L-shaped sidewall spacer located on sidewalls of the gate structure and extending over the substrate adjacent to the gate structure; and faceted diffusion regions on the substrate, adjacent to the L-shaped sidewall spacer.
Abstract:
The present disclosure relates to semiconductor structures and, more particularly, to replacement metal gate structures with reduced shorting and uniform chamfering, and methods of manufacture. The structure includes: a long channel device composed of a conductive gate material with a capping layer over the conductive gate material and extending to sides of the conductive gate material; and a short channel device composed of the conductive gate material and the capping layer over the conductive gate material.
Abstract:
A device including a triple-layer EPI stack including SiGe, Ge, and Si, respectively, with Ga confined therein, and method of production thereof. Embodiments include an EPI stack including a SiGe layer, a Ge layer, and a Si layer over a plurality of fins, the EPI stack positioned between and over a portion of sidewall spacers, wherein the Si layer is a top layer capping the Ge layer, and wherein the Ge layer is a middle layer capping the SiGe layer underneath; and a Ga layer in a portion of the Ge layer between the SiGe layer and the Si layer.