Abstract:
A hetero-channel FinFET device provides enhanced switching performance over a FinFET device having a silicon channel, and is easier to integrate into a fabrication process than is a FinFET device having a germanium channel. A FinFET device featuring the heterogeneous Si/SiGe channel includes a fin having a central region made of silicon and sidewall regions made of SiGe. A hetero-channel pFET device in particular has higher carrier mobility and less gate-induced drain leakage current than either a silicon device or a SiGe device. The hetero-channel FinFET permits the SiGe portion of the channel to have a Ge concentration in the range of about 25-40% and permits the fin height to exceed 40 nm while remaining stable.
Abstract:
Methods and structures for forming a reduced resistance region of a finFET are described. According to some aspects, a dummy gate and first gate spacer may be formed above a fin comprising a first semiconductor composition. At least a portion of source and drain regions of the fin may be removed, and a second semiconductor composition may be formed in the source and drain regions in contact with the first semiconductor composition. A second gate spacer may be formed covering the first gate spacer. The methods may be used to form finFETs having reduced resistance at source and drain junctions.
Abstract:
A method for making a semiconductor device may include forming first and second spaced apart semiconductor active regions with an insulating region therebetween, forming at least one sacrificial gate line extending between the first and second spaced apart semiconductor active regions and over the insulating region, and forming sidewall spacers on opposing sides of the at least one sacrificial gate line. The method may further include removing portions of the at least one sacrificial gate line within the sidewall spacers and above the insulating region defining at least one gate line end recess, filling the at least one gate line end recess with a dielectric material, and forming respective replacement gates in place of portions of the at least one sacrificial gate line above the first and second spaced apart semiconductor active regions.
Abstract:
A semiconductor device includes an electrostatic discharge (ESD) device formed adjacent to a first fin field effect transistor (finFET). The device includes a substrate, the first finFET and the ESD device. The first finFET is formed such that it includes finFET fins extending from the substrate. The ESD device includes two vertically stacked PN diodes including vertically stacked first, second, third and fourth layers. The first layer is an N doped layer and is disposed directly over the substrate, the second layer is a P doped layer and is disposed directly over the first layer, the third layer is an N doped layer and is disposed directly over the second layer and the fourth layer is a P doped layer and is disposed directly over the third layer.
Abstract:
A method for fabricating a finfet with a buried local interconnect and the resulting device are disclosed. Embodiments include forming a silicon fin on a BOX layer, forming a gate electrode perpendicular to the silicon fin over a portion of the silicon fin, forming a spacer on each of opposite sides of the gate electrode, forming source/drain regions on the silicon fin at opposite sides of the gate electrode, recessing the BOX layer, undercutting the silicon fin and source/drain regions, at opposite sides of the gate electrode, and forming a local interconnect on a recessed portion of the BOX layer.
Abstract:
A method for making a semiconductor device may include forming, above a substrate, first and second semiconductor regions laterally adjacent one another and each including a first semiconductor material. The first semiconductor region may have a greater vertical thickness than the second semiconductor region and define a sidewall with the second semiconductor region. The method may further include forming a spacer above the second semiconductor region and adjacent the sidewall, and forming a third semiconductor region above the second semiconductor region and adjacent the spacer, with the second semiconductor region including a second semiconductor material different than the first semiconductor material. The method may also include removing the spacer and portions of the first semiconductor material beneath the spacer, forming a first set of fins from the first semiconductor region, and forming a second set of fins from the second and third semiconductor regions.
Abstract:
Methods and structures associated with forming finFETs that have fin pitches less than 30 nm are described. A selective nitridation process may be used during spacer formation on the gate to enable finer fin pitch than could be achieved using traditional spacer deposition processes. The spacer formation may also allow precise control over formation of source and drain junctions.
Abstract:
Methods and structures for forming a reduced resistance region of a finFET are described. According to some aspects, a dummy gate and first gate spacer may be formed above a fin comprising a first semiconductor composition. At least a portion of source and drain regions of the fin may be removed, and a second semiconductor composition may be formed in the source and drain regions in contact with the first semiconductor composition. A second gate spacer may be formed covering the first gate spacer. The methods may be used to form finFETs having reduced resistance at source and drain junctions.
Abstract:
Techniques and structures for shaping the source and drain junction profiles of a finFET are described. A fin may be partially recessed at the source and drain regions of the finFET. The partially recessed fin may be further recessed laterally and vertically, such that the laterally recessed portion extends under at least a portion of the finFET's gate structure. Source and drain regions of the finFET may be formed by growing a buffer layer on the etched surfaces of the fin and/or growing a source and drain layer at the source and drain regions of the fin. The lateral recess can improve channel-length uniformity along the height of the fin.
Abstract:
A semiconductor substrate includes a bulk substrate layer that extends along a first axis to define a width and a second axis perpendicular to the first axis to define a height. A plurality of hetero semiconductor fins includes an epitaxial material formed on a first region of the bulk substrate layer. A plurality of non-hetero semiconductor fins is formed on a second region of the bulk substrate layer different from the first region. The non-hetero semiconductor fins are integrally formed from the bulk substrate layer such that the material of the non-hetero semiconductor fins is different from the epitaxial material.