Abstract:
An engine system includes an engine with a combustion chamber, an intake line in which external air flows, and an exhaust line in which exhaust gas flows. A compressor is disposed in the intake line and rotated with a turbine to compress external air. A first recirculation line is branched off from the exhaust line and merged into the intake line. An EGR cooler cools exhaust gas flowing through the first recirculation line. A second recirculation line is branched off from the first recirculation line. A bypass line is branched off from the first recirculation line between an electric supercharger and the EGR cooler. A three-way valve is disposed where the bypass and first recirculation lines join. An intake valve is disposed in the intake line between where the first recirculation line and intake valve join and where the bypass line and intake valve join.
Abstract:
An engine structure for a vehicle includes: a turbocharger rotating by a flow of exhaust gas and compress intake air; a first runner communicating with at least one of a plurality of combustion chambers which are formed in an engine and communicating with the turbocharger; a second runner communicating with remaining combustion chambers which are not in communication with the first runner; and a supercharger rotating by a motor, which is cooled by a coolant, and compressing intake air.
Abstract:
An engine system may include: an engine including cylinders that generate a driving torque by combusting fuel; a first intake manifold connected to an intake line through which flows intake air into some of the plurality of cylinders; a second intake manifold supplying the intake air to the other cylinders of the plurality of cylinders through the first intake manifold; a first exhaust manifold connected to some cylinders that are connected to the first intake manifold; a second exhaust manifold connected to some other cylinders that are connected to the second intake manifold; a recirculation line branched from the second exhaust manifold to be coupled to the second intake manifold; a recirculation inlet valve disposed at a point at which the recirculation line and the second exhaust manifold are joined; and a manifold connection valve disposed on an intake line between the first intake manifold and the second intake manifold.
Abstract:
A method for controlling an exhaust gas recirculation (EGR) system which is provided with an intake throttle valve and an EGR valve driven by a motor may include detecting an engine speed and an amount of intake air for each cylinder of an engine while the engine is operating, determining an amount of air flow supplied to the engine based on the engine speed and the amount of intake air for each cylinder, determining an equivalent cross-section of the EGR valve based on the amount of air flow, determining an opening angle of the EGR valve based on the engine speed, the amount of intake air for each cylinder, the amount of air flow, and the equivalent cross-section of the EGR valve, and controlling the EGR valve according to the opening angle of the EGR valve.
Abstract:
An control apparatus and method for an engine having a turbocharger may include determining a load condition of the engine by a controller, and opening and closing an intake valve, a throttle valve, and a wastegate valve by the controller according to the load condition of the engine, where a combustion chamber generates power by combusting a fuel, an intake valve adjusts an air/fuel mixed gas flowed into the combustion chamber, a continuously variable valve timing apparatus advances or retards an opening/closing timing of the intake valve, a turbocharger having a turbine and a compressor compressing air flowed into the combustion chamber, a throttle valve adjusting air supplied to the combustion chamber, a wastegate valve adjusting the exhaust gas flowed into the turbine, and a controller controlling the intake valve, the throttle valve, and the wastegate valve according to a load region of the engine.
Abstract:
A supercharging system for an engine includes: a cylinder block forming a combustion chamber; an intake manifold connected to the cylinder block to supply ambient air thereto; an exhaust manifold collecting exhaust gas discharged from the combustion chamber and guiding the same to the environment; a third supercharge path connecting an inlet of the intake manifold to the exhaust manifold; and an electric supercharger supplying compressed air to the exhaust manifold through the third supercharge path. Responsiveness of an engine is enhanced and stabilization of the engine is promoted.
Abstract:
An exhaust gas combustion system advances exhaust timing by using an electric CVVT apparatus. The system may include: an air supply passage adapted to provide for passing air to be supplied to an engine; an exhaust manifold adapted to transmit exhaust gas of the engine to an exhaust passage; an air injection passage adapted to connect the air supply passage with the exhaust manifold so as to supply a part of air passing through the air supply passage to the exhaust manifold; and an air valve disposed at the air injection passage so as to selectively open or close the air injection passage. Unburned gas melded in exhaust gas may be combusted according to air supplied to the exhaust manifold.
Abstract:
A variable intake manifold apparatus for an internal combustion engine, may include an inlet drawing in outside air and being connected to a main passage, first and second outlets branched from the main passage and fluid-connected to the inlet through the main passage and releasing the outside air drawn through the main passage through the first and second outlets, and a partition dividing the main passage and one of the first and second intake passages.
Abstract:
An apparatus of controlling an engine including an electric supercharger includes: an engine to combust fuel to generate power; a drive motor to assist the power of the engine and selectively operate as a generator to generate electrical energy; a battery configured to supply electrical energy to the drive motor and to be charged by the electrical energy generated from the drive motor; a plurality of electric superchargers respectively installed in a plurality of intake lines through which an ambient air flows to be supplied to a combustion chamber of the engine; and a controller that based on a determined driving tendency, adjusts a target speed of the electric superchargers of the plurality of electric superchargers, determine a driving mode of the electric superchargers, limits a maximum output of the engine, and variably adjusts a SOC electricity-generating region where the engine charges the battery.
Abstract:
A control apparatus of an engine for a hybrid vehicle includes an engine including at least one cylinder that generates power required for vehicle driving by fuel combustion, an injector that injects fuel into the cylinder, a driving motor that assists the power of the engine, and a controller that selectively performs a single injection mode in which fuel is injected once into the cylinder of the engine through the injector and a multiple injection mode in which fuel is injected a plurality of times into the cylinder of the engine through the injector, in a transition region that transitions from a theoretical air-fuel ratio operating region in which the engine is operated at a theoretical air-fuel ratio to a lean-burn combustion operating region in which the engine is operated leaner than the theoretical air-fuel ratio.