摘要:
A resistless lithography method for fabricating fine stiuctures is disclosed. IN an embodiment, a semiconductor mask layer (HM) may be formed on a carrier material (TM, HM′) and a selective ion implantation (I) being effected in order to dope selected regions (1) of the semiconductor mask layer (HM). Wet chemical removal of the non doped regions of the semiconductor mask layer (HM) yields a semiconductor mask which can be used for further patterning. A simple and high precision resistless lithography method for structures smaller than 100 nm is obtained in this way.
摘要:
The invention relates to a method for producing a capacitor arrangement, and to a corresponding capacitor arrangement, wherein the first insulating layer is formed at the surface of a carrier substrate and a first capacitor electrode with a multiplicity of interspaced first interconnects is produced in said insulating layer. Using a mask layer, partial regions of the first insulating layer are removed for the purpose of uncovering the multiplicity of first interconnects, and after the formation of a capacitor dielectric at the surface of the uncovered first interconnects, a second capacitor electrode is formed with a multiplicity of interspaced second interconnects lying between the first interconnects coated with capacitor dielectric. This additionally simplified production method enables self-aligning and cost-effective production of capacitors having a high capacitance per unit area and mechanical stability.
摘要:
A method for fabricating a spacer structure includes: forming a gate insulation layer having a gate deposition-inhibiting layer, a gate layer and a covering deposition-inhibiting layer on a semiconductor substrate, and patterning the gate layer and the covering deposition-inhibiting layer in order to form gate stacks. An insulation layer is deposited selectively using the deposition-inhibiting layers, thereby permitting highly accurate formation of the spacer structure.
摘要:
A method for fabricating a short channel field-effect transistor is presented. A sublithographic gate sacrificial layer is formed, as are spacers at the side walls of the gate sacrificial layer. The gate sacrificial layer is removed to form a gate recess and a gate dielectric and a control layer are formed in the gate recess. The result is a short channel field-effect transistor with minimal fluctuations in the critical dimensions in a range below 100 nanometers.
摘要:
A vertical field-effect transistor having a semiconductor layer, in which a doped channel region is arranged along a depression. A “buried” terminal region leads as far as a surface of the semiconductor layer. The field-effect transistor also has a doped terminal region near an opening of the depression as well as the doped terminal region remote from the opening, a control region arranged in the depression, and an electrical insulating region between the control region and the channel region. The terminal region remote from the opening leads as far as a surface containing the opening or is electrically conductively connected to an electrically conductive connection leading to the surface. The control region is arranged in only one depression. The field-effect transistor is a drive transistor at a word line or at a bit line of a memory cell array.
摘要:
The invention relates to a method for fabricating a short channel field-effect transistor, comprising the steps of: forming a sublithographic gate sacrificial layer (3M), forming spacers (7S) at the side walls of the gate sacrificial layer (3M), removing the gate sacrificial layer (3M) to form a gate recess and forming a gate dielectric (10) and a control layer (11) in the gate recess. The result is a short channel FET with minimal fluctuations in the critical dimensions in a range below 100 nanometers.
摘要:
A method for fabricating a spacer structure includes: forming a gate insulation layer having a gate deposition-inhibiting layer, a gate layer and a covering deposition-inhibiting layer on a semiconductor substrate, and patterning the gate layer and the covering deposition-inhibiting layer in order to form gate stacks. An insulation layer is deposited selectively using the deposition-inhibiting layers, thereby permitting highly accurate formation of the spacer structure.
摘要:
A power transistor has a plurality of small emitter-base complexes arranged in an array. These complexes are electrically insulated from the surrounding semiconductor material by separating regions such that for the current supply to the collectors, a joint subcollector layer and thereupon a collector metallization exist outside of the emitter-base complexes and reaching up to the separating regions. The individual emitter-base complexes are electrically connected with each other via strip-shaped base supply lines and strip-shaped emitter supply lines, and also with a base contact surface and an emitter contact surface.
摘要:
A permeable base transistor has an emitter layer or emitter layer sequence composed of a semiconductor material which has a greater energy band gap than a semiconductor material of a base layer. This emitter layer or emitter layer sequence is selectively grown into an opening of the base layer and onto a collector layer situated therebelow.
摘要:
Method for manufacturing a self-aligned emitter-base complex whereby a sequence of epitaxial layers, which corresponds to the optimal base-emitter layer sequence in the re-etched part of the heterobipolar transistor is grown. Subsequently, the base implantation is introduced using a dummy-emitter as a mask. Using a dielectric mask covering the region not covered by the dummy-emitter, after the removal of the dummy-emitter the emitter contact layers are selectively grown in its region. The contacting is then provided.