Abstract:
An actinic ray-sensitive or radiation-sensitive resin composition includes a resin (A) containing a repeating unit represented by General Formula (4) and a crosslinking agent (C) containing a polar group, in which the crosslinking agent (C) is a compound represented by General Formula (1) or a compound in which two to five structures represented by General Formula (1) are connected via a linking group or a single bond represented by L1 in General Formula (3).
Abstract:
A method of fabricating a reflective photomask is provided. The method includes sequentially forming a multi-layered reflective layer, an absorption layer and an anti-reflective coating (ARC) layer on a substrate. ARC patterns are formed to expose a portion of the absorption layer by directly irradiating an ion beam onto a portion of the ARC layer to etch the portion of the ARC layer. The exposed portion of the absorption layer is etched using the ARC patterns as etch masks to form absorption patterns exposing a portion of the multi-layered reflective layer.
Abstract:
A multi charged particle beam writing apparatus according to an embodiment, includes a setting unit to set a second region such that more openings in remaining openings except for an opening through which the defective beam passes are included in the second region, a selection unit to select a mode from a first mode in which a pattern is written on a target object by using multiple beams having passed openings in the second region and a second mode in which multiple writing is performed while shifting a position by using at least one of remaining multiple beams in the state where the defective beam is controlled to be beam off and additional writing is performed for a position which was supposed to be written by the defective beam, and a writing processing control unit to control to write in the mode selected.
Abstract:
A method for forming an etching mask comprises irradiating a focused ion beam onto a surface of a substrate and forming an etching mask used for oblique etching including an ion containing portion in the irradiated region. A method for fabricating a three-dimensional structure comprises preparing a substrate, irradiating a focused ion beam onto a surface of the substrate and forming an etching mask including an ion-containing portion in the irradiated region, and dry-etching the substrate from a diagonal direction using the etching mask and forming a plurality of holes.
Abstract:
Atomic lithography for depositing atoms on a substrate is carried out by forming an atomic beam, and directing it toward a substrate, and providing converging laser beams above a surface of the substrate, wherein the laser beams are modulated by at least one spatial light modulator through which the laser beam passes to form at least one high intensity optical spot by interference to selectively focus the atomic beam. The optical spot and focused atomic beam can be translated in a selected pattern by appropriate control of the individual pixel elements in the spatial light modulator. An atomic lithography system that can be configured to form arbitrary two-dimensional nanostructures on a substrate may include at least one spatial light modulator and lenses positioned adjacent the at least one spatial light modulator. The lenses and the at least one spatial light modulator are configured to selectively form a high intensity optical spot to focus atoms from an atomic beam onto the substrate.
Abstract:
Structures of microminiature dimensions are formed by scanning a nearly parallel beam of high energy light ions across the surface of a resist material such as PMMA in a predetermined pattern. The resulting chemical changes in the exposed resist material allows a chemical developer to remove the exposed material while leaving the unexposed material substantially unaffected. In addition because the ions have a well defined range in the material depending on their energy, the resist can be exposed to a predetermined well defined depth. By this method, resist structures of three dimensional complexity can be micromachined. This is achieved by simultaneously scanning the beam and orienting the resist layer in a controlled manner. Further enhancement may be achieved by the use of multiple deposition and exposure of resist layers. These resist microstructures may be further utilized to produce microstructures in other materials by the application of processes such as electroplating and micromoulding.
Abstract:
At least one strippable film on a surface of a thin film to be patterned is formed, then the at least one strippable film and the thin film to be patterned is patterned by using FIB, and thereafter the at least one strippable film is removed.
Abstract:
An ultra-fine microfabrication method using an energy beam is based on the use of shielding provided by nanometer or micrometer sized micro-particles to produce a variety of three-dimensional fine structures which have not been possible by the traditional photolithographic technique which is basically designed to produce two-dimensional structures. When the basis technique of radiation of an energy beam and shielding is combined with a shield positioning technique using a magnetic, electrical field or laser beam, with or without the additional chemical effects provided by reactive gas particle beams or solutions, fine structures of very high aspect ratios can be produced with precision. Applications of devices having the fine structures produced by the method include wavelength shifting in optical communications, quantum effect devices and intensive laser devices.
Abstract:
Focused ion beam (FIB) systems are used for IC mask or reticle repair and imaging and other applications. The impinging ions can cause an undesirable charge build-up on the specimen. Prior to beginning repair operations in a FIB system, a fluid containing a conductive material such as dimethyl ammonium salt is applied to the reticle, mask or device and allowed to dry, leaving a thin conductive layer on the specimen. A leakage path is preferably provided from the thin conductive layer to ground, to prevent charge buildup on the specimen. The FIB is used to cut through the conductive layer before commencing FIB deposition, to assure proper bonding of the deposited material. The technique also has application with electron beam imaging systems.