Abstract:
At least one layer including a scavenging material and a dielectric material is deposited over a gate stack, and is subsequently anisotropically etched to form a oxygen-scavenging-material-including gate spacer. The oxygen-scavenging-material-including gate spacer can be a scavenging-nanoparticle-including gate spacer or a scavenging-island-including gate spacer. The scavenging material is distributed within the oxygen-scavenging-material-including gate spacer in a manner that prevents an electrical short between a gate electrode and a semiconductor material underlying a gate dielectric. The scavenging material actively scavenges oxygen that diffuses toward the gate dielectric from above, or from the outside of, a dielectric gate spacer that can be formed around the oxygen-scavenging-material-including gate spacer.
Abstract:
Systems and methods for determining a chip yield are disclosed. One system includes a first level integration solver and a second level integration solver. The first level integration solver is configured to obtain a first probability distribution function modeling variations within a chip and to perform a discontinuous first level integration with the first probability distribution function. In addition, the second level integration solver is implemented by a hardware processor and is configured to perform a continuous second level integration based on a second probability distribution function modeling variations between dies to determine the chip yield.
Abstract:
After formation of gate structures over semiconductor fins and prior to formation of raised active regions, a directional ion beam is employed to form a dielectric material portion on end walls of semiconductor fins that are perpendicular to the lengthwise direction of the semiconductor fins. The angle of the directional ion beam is selected to be with a vertical plane including the lengthwise direction of the semiconductor fins, thereby avoiding formation of the dielectric material portion on lengthwise sidewalls of the semiconductor fins. Selective epitaxy of semiconductor material is performed to grow raised active regions from sidewall surfaces of the semiconductor fins. Optionally, horizontal portions of the dielectric material portion may be removed prior to the selective epitaxy process. Further, the dielectric material portion may optionally be removed after the selective epitaxy process.
Abstract:
The present disclosure provides a method for forming a semiconductor device that includes forming a replacement gate structure overlying a channel region of a substrate. A mandrel dielectric layer is formed overlying source and drain regions of the substrate. The replacement gate structure is removed to provide an opening exposing the channel region of the substrate. A functional gate structure is formed over the channel region including a work function metal layer. A protective cap structure is formed over the functional gate structure. At least one via is etched through the mandrel dielectric layer selective to the protective cap structure to expose a portion of at least one of the source region and the drain region. A conductive fill is then formed in the vias to provide a contact to the at least one of the source region and the drain region.
Abstract:
Increased protection of areas of a chip are provided by both a mask structure of increased robustness in regard to semiconductor manufacturing processes or which can be removed with increased selectivity and controllability in regard to underlying materials, or both. Mask structures are provided which exhibit an interface of a chemical reaction, grain or material type which can be exploited to enhance either or both types of protection. Structures of such masks include TERA material which can be converted or hydrated and selectively etched using a mixture of hydrogen fluoride and a hygroscopic acid or organic solvent, and two layer structures of similar or dissimilar materials.
Abstract:
An apparatus and method for combating the effects of bias temperature instability (BTI) and other variability in a memory cell. Bit lines connecting to a memory cell contain two alternate paths that criss-cross to connect a lower portion of a first bit line to an upper portion of a second bit line, and to connect a lower portion of the second bit line to an upper portion of the first bit line. Alternative to activating transistors on the bit lines to read and write to the memory cell, transistors on the alternative paths may be activated to read and write to the memory cell from the opposite bit line. In this fashion, the memory cell may be read through the bit lines to a sense amplifier where the bit values are latched. While the bit values remain latched in the sense amplifier, the transistors on the bit lines are deactivated and the transistors on the alternate paths are activated. When the word line is accessed, the bit values will be written into the opposite sides of the memory cell, reversing the biases.