摘要:
A control system (18) for an automotive vehicle (10) has a first roll condition detector (64A), a second roll condition detector (64B), a third roll condition detector (64C), and a controller (26) that uses the roll condition generated by the roll condition detectors (64A-C) to determine a wheel lift condition. Other roll condition detectors may also be used in the wheel lift determination. The wheel lift conditions may be active or passive or both.
摘要:
A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.
摘要:
A vehicle includes a control system that is used to control a vehicle system. The control system determines a roll condition in response to a yaw rate sensor and a pitch rate sensor without having to use a roll rate sensor. A relative roll angle, relative pitch angle, global roll angle, and global pitch angle may also be determined. A safety system may be controlled in response to the roll condition, roll angle, or the pitch angles individually or in combination.
摘要:
A method of controlling a controllable chassis system or a safety system (44) for a vehicle (10) includes determining an added mass placed on the vehicle and relative to a known vehicle mass. A vehicle characteristic is adjusted in response to the added mass. A control system (18) for an automotive vehicle (10) includes a sensor (20, 28-42) that generates a signal. A controller (26) determines added mass on the vehicle (10) in response to the signal and adjusts a vehicle characteristic in response to the added mass.
摘要:
A yaw stability control system (18) is enhanced to include roll stability control function for an automotive vehicle and includes a plurality of sensors (28–39) sensing the dynamic conditions of the vehicle. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) generates both a yaw stability feedback control signal and a roll stability feedback control signal. The priority of achieving yaw stability control or roll stability control is determined through priority determination logic. If a potential rollover event is detected, the roll stability control will take the priority. The controller for roll stability control function determines a roll angle of the vehicle from the lateral acceleration sensor signal and calculates the feedback control signal based on the roll angle.
摘要:
A control system (18) and method for an automotive vehicle (10) includes a pitch rate sensor (37) generating a pitch rate signal, a longitudinal acceleration sensor (36) generating a longitudinal acceleration signal, and a yaw rate sensor (28) generating a yaw rate signal. A safety system (44) and the sensors are coupled to a controller. From the sensors, the controller (26) determines an added mass and a position of the added mass, a pitch gradient and/or a pitch acceleration coefficient that takes into account the added mass and position. The controller controls a vehicle system in response to the added mass and the position of the added mass, the pitch gradient and/or pitch acceleration coefficient variables.
摘要:
A yaw stability control system (18) is enhanced to include roll stability control function for an automotive vehicle and includes a plurality of sensors (28–39) sensing the dynamic conditions of the vehicle. The sensors may include a speed sensor (20), a lateral acceleration sensor (32), a yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) is coupled to the speed sensor (20), the lateral acceleration sensor (32), the yaw rate sensor (28) and a longitudinal acceleration sensor (36). The controller (26) generates both a yaw stability feedback control signal and a roll stability feedback control signal. The priority of achieving yaw stability control or roll stability control is determined through priority determination logic. If a potential rollover event is detected, the roll stability control will take the priority. The controller for roll stability control function determines a roll angle of the vehicle from the lateral acceleration sensor signal and calculates the feedback control signal based on the roll angle.
摘要:
A control system (18) for an automotive vehicle (10) having a safety system includes a controller (26) determining a first body to road angle; determining a second body to road angle; determining a final body to road angle from the first body to road angle and the second body to road angle; and controlling the safety system in response to the final body to road signal.
摘要:
A method of densensitizing includes determining a relative roll angle, determining when the vehicle is in a transitional maneuver, and when the vehicle is in a transitional maneuver, setting a roll signal for control to the relative roll angle, reducing control effort and controlling a safety system (38) correspondingly.
摘要:
A control system (24) for controlling a safety system (40) of an automotive vehicle includes a plurality of wheel speed sensors (30) generating a plurality of wheel velocity signals, a steering angle sensor (39) generating a steering actuator angle signal, a yaw rate sensor (28) generating a yaw rate signal, a longitudinal acceleration sensor (32) generating a longitudinal acceleration signal and a pitch angle generator generating a pitch angle signal and a controller (26). The controller (26) generates a longitudinal vehicle velocity in response to the plurality of wheel speed signals, the steering angle signal, the yaw rate signal, the lateral acceleration signal and the pitch rate signal. The controller (26) may determine a slip-related longitudinal velocity and a non-slip longitudinal velocity as intermediate steps.