摘要:
The present invention generally relates to a floating gate structure and method of forming the same. The floating gate structure has an upper portion which is wider than a middle portion of the floating gate structure. The upper portion may have a flared, rounded or bulbous shape instead of being pointed or having sharp corners. The reduction in pointed or sharp features of the upper portion reduces the electric field intensity near the upper portion, which decreases current leakage through the interpoly dielectric. The method includes forming a nitride cap on the upper surface of the floating gate structure to assist in shaping the floating gate. The floating gate is then formed using multiple selective oxidation and etching processes.
摘要:
A luminescent element includes a luminescent glass and a metal layer with a metal microstructure formed on a surface of the luminescent glass; wherein the luminescent glass has a chemical composition: bY2O3.cAl2O3.dB2O3.yTb2O3, wherein bY2O3.cAl2O3.dB2O3.yTb2O3. A preparation method of a luminescent element and a luminescence method are also provided. The luminescent element has good luminescence homogeneity, high luminescence efficiency, good luminescence stability and simple structure, and can be used in luminescent device with ultrahigh brightness.
摘要:
A luminescent element comprises: a luminescent substrate; and a metal layer with a metal microstructure formed on a surface of the luminescent substrate; the luminescent substrate comprises luminescent materials with a chemical composition of Y3AlxGa5-xO12:Tb, and 0≦x≦5. A preparation method of a luminescent element and a luminescence method are also provided. The luminescent element has good luminescence homogeneity, high luminescence efficiency, good luminescence stability and simple structure, and can be used in luminescent device with ultrahigh brightness.
摘要翻译:发光元件包括:发光基板; 以及在所述发光基板的表面上形成有金属微观结构的金属层; 发光基板包括化学组成为Y 3 Al x Ga 5-x O 12:Tb,0≦̸ x≦̸ 5的发光材料。 还提供了发光元件的制备方法和发光方法。 发光元件具有良好的发光均匀性,发光效率高,发光稳定性好,结构简单,可用于超高亮度发光装置。
摘要:
A luminescent element is disclosed including: a luminescent substrate; and a metal layer with a metal microstructure formed on a surface of the luminescent substrate; wherein the luminescent substrate comprises a luminescent material with a chemical composition of Y2SiO5:Tb. A preparation method of a luminescent element and a luminescence method are also provided. The luminescent element has good luminescence homogeneity, high luminescence efficiency, good luminescence stability and simple structure, and can be used in luminescent devices with ultrahigh brightness.
摘要:
A luminescent element comprises: a luminescent substrate; and a metal layer with a metal microstructure formed on a surface of the luminescent substrate; the luminescent substrate comprises luminescent materials with a chemical composition of Zn2SiO4:Mn. A preparation method of a luminescent element and a luminescence method are also provided. The luminescent element has good luminescence homogeneity, high luminescence efficiency, good luminescence stability and simple structure, and can be used in luminescent device with ultrahigh brightness.
摘要:
The present invention discloses an absorber composition and photovoltaic device (PV) using the composition comprising nanoparticles and/or sintered nanoparticles comprising compounds having the formula MAxMByMCz(LAaLBb)4 where MA, MB and MC comprise elements chosen from the group consisting of Fe, Co, Ni, Cu, Zn, Cd, Sn and Pb, LA and LB are chalcogens and x is between 1.5 and 2.2, y and z are independently the same or different and are between 0.5 and 1.5 and (a+b)=1.Particularly preferred synthetic routes to uniform thin films in PV devices comprising sintered nanoparticles of Cu2ZnSnSe4 and Cu2ZnSnS4 are disclosed.
摘要:
A structure for surface enhanced Raman spectroscopy is disclosed herein. A substrate has a stack configured vertically thereon. The stack encompasses at least two metal layers and at least one dielectric layer therebetween. Each layer of the stack has a controlled thickness, and each of the at least two metal layers is configured to exhibit a predetermined characteristic of plasmonic resonance.
摘要:
The present invention disclosed compounds of Structural Formula (I), and enantiomer, racemic body, pharmaceutically acceptable salts, solvates or hydrates thereof, wherein variable groups are as defined within, as well as methods for preparing such compounds. The compounds are useful as PPARγ agonist, through activating PPAR-RXR heterodimers that intereacts with specific DNA response elements within promoter regions of target gene, particularly in the treatment and prevention of polycystic kidney and cancer.
摘要:
Systems and methods are provided for probing an occluded body lumen, including a flexible conduit insertable into the body lumen, at least one delivery waveguide and at least one collection waveguide integrated with the flexible conduit and arranged to deliver and collect radiation about a distal end of said flexible conduit, at least one radiation source connected to a transmission input of the at least one delivery waveguide, at least one optical detector connected to a transmission output of at least one collection waveguide, a spectrometer connected with the at least one optical detector, and constructed and arranged to scan radiation and perform spectroscopy, and a controller programmed to process data from said spectrometer and provide information for directing said flexible conduit through obstacles within the occluded body lumen.
摘要:
A catheter is provided for placement within a body lumen, the catheter including a flexible conduit that is elongated along a longitudinal axis, the flexible conduit having a proximal end and a distal end. The catheter further includes at least one delivery waveguide and at least one collection waveguide positioned along the flexible conduit, the at least one delivery waveguide and the at least one collection waveguide constructed and arranged to transmit radiation at a wavelength in a range of about 250 to 2500 nanometers. The catheter further includes a flexible, expandable first surface encircling surrounding a segment of the conduit, a transmission output of the at least one delivery waveguide and a transmission input of the at least one collection waveguide located within the flexible, expandable first surface, and the distal end of at least one of the at least one delivery waveguide and the at least one collection waveguide tethered to the flexible, expandable first surface radially translatable with respect to the flexible, expandable first surface, the at least one transmission input located between a portion of the flexible, expandable first surface and a portion of the second surface.