Abstract:
The present invention provides a method for using Differentiated Services (DiffServ) to implement the IP packet classification and the marking of a Differential Service Code Point (DSCP) for the quality of service (QoS) in the wireless access network of the IP-based universal mobile telecommunication system (UMTS). The present invention makes a classification to the data stream which is outgoing from the Iub interface at the Node B side, data stream which is outgoing from the Iub interface at the RNC side and data stream which is outgoing from the Iur interface at the RNC side according to the direction and the process of the respective data streams, and assigns and adjusts the priority of the data stream classified according to the principles for optimizing QoS and radio resources. When the network is congested, the data stream with a high level will have a higher priority than that with a lower level in queue and source occupancy, and the packet with a lower priority in the same queue is discarded. The DiffServ only contains a limited number of service levels and has little condition information, thus easy to be achieved and expanded.
Abstract:
This invention discloses a semiconductor power device formed on an upper epitaxial layer of a first conductivity type supported on a semiconductor substrate comprises an active cell area and a termination area disposed near edges of the semiconductor substrate. The semiconductor power device having a super junction structure with the epitaxial layer formed with a plurality of doped columns of a second conductivity type. The termination area further comprises a plurality of surface guard ring regions of the second conductivity type dispose near a top surface of the epitaxial layer close to the doped columns of the second conductivity type. In one of the embodiments, one of the surface guard ring regions extending laterally over several of the doped columns in the termination area.
Abstract:
An LED actuating device comprises an LED actuating module, the LED actuating module comprises a micro-programmed control unit (MCU), a VF-value detection module, an actuator and an LED lamp unit; the MCU receives the VF value detected by the VF-value detection module; when the VF value is greater than or equal to a first boundary value, the LED lamp unit is actuated to operate in the constant current area at the first constant actuating current by the actuator; when the VF value is less than the first boundary value, the LED lamp unit is actuated to operate in the regulation area at the continuous step-down actuating current by the actuator until the VF is equal to the second boundary value, and the second boundary value is less than the first boundary value.
Abstract:
A switching device includes a low voltage normally-off transistor and a control circuit built into a common die. The device includes source, gate and drain electrodes for the transistor and one or more auxiliary electrodes. The drain electrode is on one surface of a die on which the transistor is formed, while each of the remaining electrodes is located on an opposite surface. The one or more auxiliary electrodes provide electrical contact to the control circuit, which is electrically connected to one or more of the other electrodes.
Abstract:
A semiconductor power device formed in a semiconductor substrate comprising a highly doped region near a top surface of the semiconductor substrate on top of a lightly doped region supported by a heavily doped region. The semiconductor power device further comprises source trenches opened into the highly doped region filled with conductive trench filling material in electrical contact with the source region near the top surface. The semiconductor power device further comprises buried P-regions disposed below the source trenches and doped with dopants of opposite conductivity from the highly doped region. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Abstract:
The invention discloses a vertical parasitic PNP transistor in a BiCMOS process and manufacturing method of the same, wherein an active region is isolated by STIs. The transistor includes a collector region, a base region, an emitter region, pseudo buried layers, and N-type polysilicon. The pseudo buried layers, formed at the bottom of the STIs located on both sides of the collector region, extend laterally into the active region and contact with the collector region, whose electrodes are picked up through making deep-hole contacts in the STIs. The N-type polysilicon is formed on the base region and contacts with it, whose electrodes are picked up through making metal contacts on the N-type polysilicon. The transistors can be used as output devices in high-speed and high-gain circuits, efficiently reducing the transistors area, diminishing the collector resistance, and improving the transistors performance. The method can reduce the cost without additional technological conditions.
Abstract:
A parasitic vertical PNP bipolar transistor in BiCMOS process comprises a collector, a base and an emitter. The collector is formed by active region with p-type ion implanting layer (P type well in NMOS). It connects a P-type conductive region, which formed in the bottom region of shallow trench isolation (STI). The collector terminal connection is through the P-type buried layer and the adjacent active region. The base is formed by N type ion implanting layer above the collector which shares a N-type lightly doped drain (NLDD) implanting of NMOS. Its connection is through the N-type poly on the base region. The emitter is formed by the P-type epitaxy layer on the base region with heavy p-type doped, and connected by the extrinsic base region of NPN bipolar transistor device. This invention also includes the fabrication method of this parasitic vertical PNP bipolar transistor in BiCMOS process. And this PNP bipolar transistor can be used as the I/O (input/output) device in high speed, high current and power gain BiCMOS circuits. It also provides a device option with low cost.
Abstract:
A switching device includes a low voltage normally-off transistor and a control circuit built into a common die. The device includes source, gate and drain electrodes for the transistor and one or more auxiliary electrodes. The drain electrode is on one surface of a die on which the transistor is formed, while each of the remaining electrodes is located on an opposite surface. The one or more auxiliary electrodes provide electrical contact to the control circuit, which is electrically connected to one or more of the other electrodes.
Abstract:
An emergently openable safe door having a mechanic lock and an electronic lock. The mechanic lock has a shell and a cylindrical plug in the shell. The plug has a primary keyway for a primary key and an emergent keyway for an emergent key. The mechanic lock and an electric lock are able to respectively be opened with a primary key and enter cod normally and be opened with the primary key and a emergent key emergently when the electronic lock thereof malfunctions or an enter code thereof is forgotten.
Abstract:
A dual key bi-step lock having a shell and a cylindrical plug in the shell. The plug has a primary keyway and a secondary keyway and at least one set of primary pin stack and at least one set of secondary pin stack between the shell and the plug, respectively coupling with the primary and the secondary keys. a longitudinal stage is formed on a cylindrical surface of the plug. An involute side face extending from the stage to the cylindrical surface of the plug. The primary key is able to dive the plug to a position of first step open at which the stage is stopped by the key pin of the secondary pin stack. The secondary pin stack is unlocked by the secondary key and the plug is able to be further driven to a position of second step open by the primary and the secondary keys from the first step open.